
 
      Page:1 of 78 

 
 

 

QE Framework - 

QE Widget 

Specifications 

Andrew Rhyder 

Andrew Starritt 

26th June 2025 

 

Copyright (c) 2019-2025 Australian Synchrotron 

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU 
Free Documentation License, Version 1.3 or any later version published by the Free Software 
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 
A copy of the license is included in the section entitled "GNU Free Documentation License". 
 



 
      Page:2 of 78 

 
 

Contents 
Introduction ............................................................................................................................................ 5 

License................................................................................................................................................. 5 

QE2DDataVisualisation ........................................................................................................................... 5 

QEAnalogIndicator and QEAnalogProgressBar ....................................................................................... 5 

QEArchiveStatus ...................................................................................................................................... 6 

QAnalogSlider and QEAnalogSlider ......................................................................................................... 6 

QAnalogSlider ..................................................................................................................................... 7 

QEAnalogSlider ................................................................................................................................... 9 

QBitStatus and QEBitStatus .................................................................................................................... 9 

QEComboBox .......................................................................................................................................... 9 

QEConfiguredLayout ............................................................................................................................. 10 

QECorrelation ........................................................................................................................................ 12 

QEDateTime .......................................................................................................................................... 14 

QEFileBrowser ....................................................................................................................................... 14 

QEFileImage .......................................................................................................................................... 14 

QEForm ................................................................................................................................................. 14 

QEFormGrid .......................................................................................................................................... 17 

Properties ...................................................................................................................................... 17 

Nested QEFormGrid ...................................................................................................................... 19 

Examples ....................................................................................................................................... 19 

QEFrame and QEPvFrame ..................................................................................................................... 21 

QEGeneralEdit ....................................................................................................................................... 22 

QEGroupBox .......................................................................................................................................... 24 

QEImage ................................................................................................................................................ 24 

QELabel ................................................................................................................................................. 24 

QEDescriptionLabel ............................................................................................................................... 27 

QELCDNumber ...................................................................................................................................... 27 

QELineEdit ............................................................................................................................................. 28 

QELink ................................................................................................................................................... 29 

QECalcout .............................................................................................................................................. 29 

QELog .................................................................................................................................................... 29 

QELogin ................................................................................................................................................. 31 



 
      Page:3 of 78 

 
 

QNumericEdit and QENumericEdit ....................................................................................................... 34 

QEPeriodic ............................................................................................................................................. 34 

QEPlot ................................................................................................................................................... 39 

QEPlotter ............................................................................................................................................... 39 

QEPushButton, QERadioButton and QECheckBox ................................................................................ 39 

QEMenuButton ..................................................................................................................................... 51 

QEPvLoadSave ....................................................................................................................................... 51 

QEPvLoadSaveButton............................................................................................................................ 52 

QEPvProperties ..................................................................................................................................... 52 

Selecting a PV name ...................................................................................................................... 54 

Selecting Displayed Field Names .................................................................................................. 55 

QRadioGroup and QERadioGroup ........................................................................................................ 56 

QERecipe ............................................................................................................................................... 56 

QEScratchPad ........................................................................................................................................ 56 

QEScript ................................................................................................................................................. 57 

QEScalarHistogram and QEWaveformHistogram ................................................................................. 60 

QESelector ............................................................................................................................................. 62 

QEShape ................................................................................................................................................ 62 

QSimpleShape and QESimpleShape...................................................................................................... 69 

QESlider ................................................................................................................................................. 69 

QESpinBox ............................................................................................................................................. 70 

QEStripChart ......................................................................................................................................... 71 

QESubstitutedLabel ............................................................................................................................... 71 

QETable ................................................................................................................................................. 72 

QENTTable ............................................................................................................................................ 73 

Appendix A ............................................................................................................................................ 74 

GNU Free Documentation Licence .................................................................................................... 74 



QE Framework – Widget Specifications 
 

 

 
      Page:4 of 78 

 
 

Introduction 
This document describes in detail the various widgets provided by the EPICS Qt, aka QE, Framework. 

This document was created by extracting the widget specification information from the QE QEGui and 

User Interface Design document. The main reason for this is ease of maintenance and avoiding editing 

unwieldly large word documents. In future, specific widgets or groups of widgets may also be extracted 

into their own documentation as well. 

License 
The QE Framework is distributed under the GNU Lesser General Public License version 3, distributed 

with the framework in the file LICENSE. It may also be obtained from here: 

http://www.gnu.org/licenses/lgpl-3.0-standalone.html 

QE2DDataVisualisation 
The QESpectrogram, QESurface and QEWaterfall widgets are described in a separate document. Please 

see the QE2DDataVisualisation document. 

QEAnalogIndicator and QEAnalogProgressBar 
The QEAnalogIndicator widget is used to simulate an analog indicator such as a bar indicator or dial. It is 

not EPICS aware. 

The QEAnalogProgressBar is based on the QEAnalogIndicator class and is EPICS aware. 

Features include: 

• Logarithmic or linear scale 

• Optional units 

• Same widget used for multiple analog indicators including dial and bar. 

• Based on QEAnalogIndicator, which is available for non-EPICS aware uses. 

• Alarm Limits are represented on the scale if required 

• The QEAnalogProgressBar widget has an arrayIndex property that can be used to select a single 

element from an array of data to provide the analog value. The default is 0. 

http://www.gnu.org/licenses/lgpl-3.0-standalone.html


QE Framework – Widget Specifications 
 

 

 
      Page:5 of 78 

 
 

 

Figure 1 QEAnalogProgressBar examples 

QEArchiveStatus 
The QEArchiveStatus widget is a non EPICS aware widget that provides status regarding the selected 

archive hosts together with process variable information retrieved from each Channel Access archive. It 

inherits directly from QEFrame (refer to QEFrame), and as such it provides user level enabled and user 

level visibility control to the frame, but note it is not a container, i.e. other widgets may not be dropped 

into a QEArchiveStatus object from within designer. 

 

Figure 2 QEArchiveStatus example 

QAnalogSlider and QEAnalogSlider 
The QAnalogSlider is a non-EPICS aware slider widget that provides an analog equivalent of the QSlider. 

It is deemed analog as it can be set by and emits a floating point (double) value as opposed to integer 

value. It is also decorated with a scale and text label showing the current value, and also provides a local 

save and restore capability. 



QE Framework – Widget Specifications 
 

 

 
      Page:6 of 78 

 
 

Unlike its QSlider counter-part, a QAnalogSlider is always horizontal and (currently, at least) always 

increases in value from left to right. 

Just as QESlider inherits from QSlider and extends it by providing EPICS awareness, QEAnalogSlider 

directly inherits from QAnalogSlider and extends QAnalogSlider by providing EPICS awareness. 

QAnalogSlider 
QAnalogSlider itself inherits directly from QFrame, although the default frameShape property is 

NoFrame. Internally, the QAnalogSlider uses a QSlider widget to provide the slider control. The widget 

also has some internal text labels and buttons which are described below. 

Figure 3 below shows five examples of QAnalogSlider. 

 

Figure 3 QAnalogSlider examples 

The first shows a slider that allows a value in the range 0.0 to 10.0 to be selected. The slider has been 

set to 2.71 - note that the text in the lower right hand side of the widget also shows the current value. If 

tracking is enabled (the default), the slider emits the valueChanged () signal while the slider is being 

dragged. If tracking is disabled, the slider emits the valueChanged () signal only when the user releases 

the slider. 

The second is similar to the first example, save that the QFrame frameShape property set to Box and the 

slider itself has been set to 3.14. 



QE Framework – Widget Specifications 
 

 

 
      Page:7 of 78 

 
 

The third is similar to the second example, however the leftText and centreText properties have been 

set to "left" and "centre" respectively. 

The forth example shows a QAnalogSlider with both the showSaveRevert and the showApply boolean 

properties set to true. The showSaveRevert cause a green save (S) and a blue revert (R) button pair to 

be display in the lower left hand side of the widget. The leftText property is ignored and the left label 

now used to show the saved position (i.e. 3.36 in this example). The saved position is also indicated 

graphically by a blue bar painted on the scale. The current slider value can be saved by clicking on the 

save button. Clicking on the revert button will set the slider current value to the saved value. The slider 

emits the valueChanged () signal after a revert. 

Clicking on the apply button causes the current value to be emitted via the appliedValue () signal. The 

valueChanged() and appliedValue() signals both emit the value of the widget as a double number, and 

apart from the name, have the same signature. The rationale for a separate signal instigated by the 

apply button is to allow any such value changes to be used/applied specifically as a result of the user 

requesting it. 

The last example shows a QAnalogSlider with a non-default style-sheet. 

Properties Summary 

Name Type Defaul
t 

Description 

value double 0.0 The widget’s value. The value is constrained to be within 
minimum to maximum. 

precision integer 2 Specified the precision used for the current value and saved 
value texts. The value is constrained to be in the range 0 to 
12. 

minimum double 0.0 Defines the minimum allowed slider value. The widget 
ensures maximum is always no less than minimum. 

maximum double 10.0 Defines the maximum allowed slider value. The widget 
ensures minimum is always no greater than maximum. 

minorInterval double 0.2 Defines the axis marker interval displayed without any 
associated scale text. The value, x, is constrained such that: 
 
       x  >=  (maximum  -  minimum) / 1000.0 
 

majorInterval double 1.0 Defines the axis marker interval displayed with some 
associated scale text. The value is constrained to be a positive 
integer multiple of minorInterval. 

tracking bool True If tracking is enabled, the slider emits the valueChanged () 
signal while the slider is being dragged. If tracking is disabled, 
the slider emits the valueChanged () signal only when the user 
releases the slider. 



QE Framework – Widget Specifications 
 

 

 
      Page:8 of 78 

 
 

leftText string "" Specifies the text displayed on the lower left hand side of the 
widget. Note: if showSaveRevert is enabled, this text field if a 
commandeered to display the current saved value. 

centreText string "" Specifies the text displayed on the lower centre of the widget. 

rightText string "" Specifies the text displayed on the lower right hand side of 
the widget. Note: this field is will be overwritten by the slider 
value whenever the slider is used. Anything other than the 
default value is probably of little use. 

showSaveRever
t 

bool False When enabled, activates the save restore capability. 

showApply bool False When enabled, this makes the apply button visible.  When 
pressed this causes the widget to emit appliedValue signal. 

 

QEAnalogSlider 
This is an EPICS aware widget based on the QAnalogSlider widget. Details are TBD. 

QBitStatus and QEBitStatus 
The QBitStatus and QEBitStatus widgets are now described in own document. 

QEComboBox 
The QEComboBox widget provides the ability to display and modify the value of a single PV using a 

combo box. This widget is derived from QComboBox. The example in Figure 4 shows QEComboBox 

widgets connected to an mbbi record. This widget is primarily intended for presenting a variable with 

enumeration strings defined for each value. Typically, the enumeration strings are defined in the 

database and will be used by the QEComboBox if the ‘useDbEnumerations’ property is set (the default). 

If the ‘useDbEnumerations’ property is not set, then the strings used by the combo box for each variable 

value must be set up in the QEComboBox at design time. This is done by modifying the 

localEnumeration property (see QE_QEGuiAndUserInterfaceDesign.docx for details). 

Warning: while using Qt’s designer you can right click over a QEComboBox and select ‘Add Items’ to add 

the combo box strings. However at run time, the combo box string will be reset when the widget 

receives its first update (to either the database enumeration values or the localEnumeration property 

values).  



QE Framework – Widget Specifications 
 

 

 
      Page:9 of 78 

 
 

 

Figure 4 QEComboBox example showing local and database defined enumeration strings 

QEConfiguredLayout 
The QEConfiguredLayout presents a tabular layout of QE widgets, including button, combo box, label 

and line edit widgets based on an xml definition stored within the widget, or in a file that can be shared 

by multiple widgets. It provides similar functionality to a sub form without the need to design and 

maintain a suitable tabular sub form. The XML defining the layout contains the definition for the rows 

and columns. Since a change to the row definition affects all columns and a change to a column 

definition affects all rows, the layout of widgets in a QEConfiguredLayout is always consistent. 

The widget can include drop down menu for selecting one of a number of items to display using the 

‘showItemList’. 

If the XML definition is stored in a file, the ‘configurationFile’ property must reference that file and the 

‘configurationType’ property must be set to ‘File’. The file is located using the rules defined in ’Error! 

Reference source not found.’ (page Error! Bookmark not defined.). Alternatively the XML may be 

defined directly in the ’configurationText’ property in which case the ‘configurationType’ property must 

be set to ‘Text’. 

The following is a sample of sample XML defining two motor stages where each is stage has a set point 

and readback for 2 axis. The result of this XML is shown in Figure 5. 

<epicsqt> 

  <item name="First Stage"> 

    <field name="X Set point" processvariable="STAGE1:X_SET" type="linedit"/> 

    <field name="Readback" processvariable="STAGE1:X" type="label" join="true"/> 



QE Framework – Widget Specifications 
 

 

 
      Page:10 of 78 

 
 

    <field name="Y Set point" processvariable="STAGE1:Y_SET" type="linedit"/> 

    <field name="Readback" processvariable="STAGE1:Y" type="label" join="true"/> 

  </item> 

  <item name="Second Stage"> 

    <field name="Z1 Set point" processvariable="STAGE2:Z1_SET" type="linedit"/> 

    <field name="Readback" processvariable="STAGE2:Z2" type="label" join="true"/> 

    <field name="Z2 Set point" processvariable="STAGE2:Z2_SET" type="linedit"/> 

    <field name="Readback" processvariable="STAGE2:Z2" type="label" join="true"/> 

  </item> 

</epicsqt> 

 

 

Figure 5 QEConfiguredLayout example 

 

 

 

The following table defines the XML elements and tags that may be used to define the layout of a 

QEConfiguredLayout: 

Tag name Element description Attributes 
(*Mandatory) 

Child element tags 
(*Mandatory) 

epicsqt A single element with this 
tag is expected in each 
configured layout xml 
definition. 

 item 



QE Framework – Widget Specifications 
 

 

 
      Page:11 of 78 

 
 

Tag name Element description Attributes 
(*Mandatory) 

Child element tags 
(*Mandatory) 

item A user selectable configured 
layout. 

name 
substitution 
visible 

field 

field A field in the layout name 
processvariable 
join 
type 
group 
visible 
editable 

 

 

QECorrelation 
The QECorrelation inherits directly from QEAbstractDynamicWidget, which in turn inherits from 

QEFrame. 

The QECorrelation widget provides both graphical and textual information about the correlation 

between two scalar PVs. See example in Figure 6 below. 

The two PV names may be drag/dropped onto the widget, copy/pasted to the widget, or entered using 

the PV name selection dialog accessed from the X and Y buttons, or via the context menu associated 

with the (red and green) PV name labels. This is similar to the way PVs are added to QEStripChart and 

QEPlotter widgets. 

As the two PVs may update independently, the QECorrelation widget samples both PV values at a fixed 

time interval (user selectable from 0.2 to 3600 seconds) to form a pair of X and Y values. 

The number of PVs pair values retained to provide the correlation information is also user selectable 

(from 4 to 5000 pairs). The data is presented graphically as a set of points (as in the example) or as a 

line. The calculated correlation value is also presented. 

PVs pair values may also be retrieved for the archive. 

The functionality may be access via the QEGui built-in PV Correlation form (via menu Tools | PV 

Correlation...) or by placing a QECorrelation widget within a user defined form. In the latter case, the 

PV variable names can be set using the variableX and variableY properties accessible when using 

designer. 

 

 



QE Framework – Widget Specifications 
 

 

 
      Page:12 of 78 

 
 

 

Figure 6 QECorrelation 

 

The QECorrelation has the following properties (that can be controlled by the user): 

property description 

variableX The x-axis process variable name 

variableY The y-axis process variable name 

variableSubstitutions The default substitutions to be applied to the PV names 

sampleInterval The sample interval 

numberPoints The number of points to be store/plotted. 

xLogarithmic When true/checked, the x-axis is displayed using a log scale 

yLogarithmic When true/checked, the y-axis is displayed using a log scale 

 



QE Framework – Widget Specifications 
 

 

 
      Page:13 of 78 

 
 

QEDateTime 
The QEDateTime widget is described in a separate document. Please see the QEDateTime.pdf 

document. 

QEFileBrowser 
The QEFileBrowser widget is described in a separate document. Please see the QEFileBrowser.pdf 

document. 

QEFileImage 
The QEFileImage widget is now described separately. Please see the associated QEFileImage.pdf 

document. 

QEForm 
The QEForm widget is used to present a Qt user interface (.ui) file. While an application can 

programmatically achieve this by opening a .ui file with a QFile class and loading the contents using the 

QUiLoader, the QEForm widget adds the following functionality: 

• The QEForm uses consistant rules for locating the file common to all QE widgets that access 

files. Refer to Error! Reference source not found. (page Error! Bookmark not defined.) for 

details. 

• The contents of a QEForm is dynamic and can be changed by changing the ‘uiFile’ property. 

• The .ui file used to generate the contents of a QEForm is monitored and re-loaded if it changes. 

• The QEForm can be used as a sub form. Forms can share common sub forms. Sub forms can be 

nested. 

• The QEForm uses macro substitutions. This means a form can contain multiple instances of the 

same sub form, each with a different set of macro substitutions. For example, a form displaying 

a set of slits could use an identical sub form for each motor.The ‘variableSubstitutions’ property 

is used to define macro substitutions unique to the sub form. These macro substitutions take 

precedence over any other macro substitutions current when the QEForm is created. 

QEForms help manage messages emitted by QE widgets. Messages can be filtered and displayed based 

on the QEform they reside in. Refer to Error! Reference source not found. (page Error! Bookmark not 

defined.) for details. 

• The .ui file loaded by a QEForm widget will have a top level widget with size and layout policies 

that may differ to those of the QEForm. To minimise any confusion, the QEForm widget ensures 

the top level widget loaded and itself share the same size and layout policies. By default the 

QEForm widget sets the top level widget loaded to match itself, but this behaviour can be 



QE Framework – Widget Specifications 
 

 

 
      Page:14 of 78 

 
 

reversed. The ‘resizeContents’ property controls this behaviour. If true, the top level widget 

loaded is set to match the QEForm. If false, the QEForm is set to match the top level widget 

loaded. 

• QEPushButton, QERadioButton and QECheckBox widgets look in the ContainerProfile class to 

see if a slot they can use to create new GUI windows is available. Applications like QEGui publish 

a slot to open new GUIs using this mechanism. If the ‘handleGuiLaunchRequests’ property is 

true, the QEForm widget publishes its own slot for launching new GUIs and so all QE widgets 

within it will use the QEForm’s mechanism for launching new GUIs. 

The following properties are specific to the QEForm widget: 

• uiFile 

File name of the user interface file to be presented. Refer to Error! Reference source not found. 

(page Error! Bookmark not defined.) for details on how this file is located. 

• handleGuiLaunchRequests 

If set the QEForm will supply the slot used by any QE widgets it creates to launch new QUIs. 

(Typically it is QE buttons that will use this slot.) 

Generally this should be left unset when used within QEGui, allowing the QEGui application to 

supply the slot used to launch new GUI windows. 

• resizeContents 

If set, the QEForm will resize the top level widget of the .ui file it opens (and set other size and 

border related properties) to match itself. This is useful if the QEForm is used as a sub form 

within a main form (possible another QEForm) and you want to control the size of the QEForm 

being used as a sub form. 

If clear, the QEForm will resize itself (and set other size and border related properties) to match 

the top level widget of the .ui file it opens. This is useful if the QEForm is used as a sub form 

within a main form (possible another QEForm) and you want to the main form to resize to 

match the size of the QEForm being used as a sub form, or you want the sub form border 

decorations (such as frame shape and shadow) to be displayed. 

In Figure 7, the QEGui application is displaying a user interface (.ui) file. QEGui uses QEForms to present 

.ui files. In the example given, the .ui file itself includes three QEForm widgets, each referencing the 

same sub form, but with different macro substitutions, resulting in a different title and the display of 

data from different variables. In this example the top level widget in the sub form is a QFrame with a 

border. To ensure the border is displayed, the QEForm widgets in the main form have their 

‘resizeContents’ property set to false so the contents (the top level QFrame in the sub form) copies its 

border properties to the QEFrame, rather than the other way around. 



QE Framework – Widget Specifications 
 

 

 
      Page:15 of 78 

 
 

 

Figure 7 QEForm examples 

A QEForm ‘uiFile’ property can include macro substitutions allowing a selection of file names based on 

macros supplied by a higher level form. For example, a GUI may open a QEForm to display motor details 

and supply the macro ‘TYPE=pmac’. A deeply nested sub form may be used to display motor details 

specific to the motor type and have a ‘uiFile’ property of ‘$(TYPE)_specific.ui’. A set of .ui files including 

pmac_specific.ui can be provided to allow type specific motor details to be displayed. 

QEFormGrid 
The QEFormGrid widget directly inherits from QEFrame. This widget provides a grid (or matrix) of 

QEForm sub-forms, each of which loads the ui file defined by the uiFile property. 

The widget also provides a variableSubstitutions property that may be used to provide (default) values 

for any macro used within the uiFile property. 

Each sub-form may be parameterised by six priority macros definitions. The actual value associated with 

these macros is determined from the row and column position within the grid and property values.The 

formal macros names are themselves defined by three macro prefix properties. 

Properties 

The following properties are specified to the QEFormGrid widget. 

a) uiFile: this defines the ui file to be loaded into each sub-form; 

b) variableSubstitutions: the provides the default substitution values for any macros used within uiFile; 

c) number: this defines the number of elements in the grid. The minimum, maximum and default 

values are 1, 210, and 4 respectively; 



QE Framework – Widget Specifications 
 

 

 
      Page:16 of 78 

 
 

d) columns: this defines the number of columns in the grid. The minimum, maximum and default 

values are 1, 42, and 1 respectively. The actual number of columns, Nc, will not exceed the number 

of elements in the grid. 

The number of rows, Nr, is calculated such that Nr is the minimum value that satisfies: 

Nr*Nc>= number. 

When the grid is incomplete, i.e. number < Nr*Nc, emtpy slots appear at the bottom left of the grid; 

e) gridOrder: this property defines the grid's slot layout scheme. This property is an enumerationwith 

two values, viz: RowMajor (default) and ColMajor.RowMajor means slot numbers first increase left 

to right rows, and then by column, e.g.: 

    1  2  3  4 

    5  6  7  8 

    9 10 

 

ColMajor means slot numbers first increase top to bottom in columns,and then by row, e.g.: 

    1  4  7 10 

    2  5  8 

    3  6  9 

 

f) margin: the grid of QEForm objects is layed out using a QGridLayout object.This property is 

effectively the grid layout's margin property; 

g) spacing: This property is effectively the grid layout's spacing property; 

h) slotMacroPrefix: this defines the prefix for the two slot related macros.The default prefix is SLOT 

and the default macro names are thus SLOT and SLOTNAME.The slot values are numeric and start 

from the slotNumberOffset value in the order defined by gridOrder.The slot-name values are 

defined by the slotStrings property; 

i) slotNumberOffset: This defines the first slot number. The default value is 1.Whereas typically this 

will be 0 or 1, any integer value is allowed.For accessing the slotStrings list to determine the 

slotname value, the offset is always zero; 

j) slotNumberWidth: This defines the minimum image width. The minimum, maximum and default 

values are 1, 6 and 2 respectively.Where necessary the slot value is zero left padded to achieve the 

required width; 

k) slotStrings: This property is a QStringList and holds the set of string values used to populate values 

for the slotname macro; 

l) rowMacroPrefix: this defines the prefix for the two row related macros.The default prefix is ROW 

and the default macro names are thus ROW and ROWNAME.The row values are numeric and start 

from the rowNumberOffset value.The rowname values are defined by the rowStrings property; 

m) rowNumberOffset: This defines the first row number. The default value is 1; 

n) rowNumberWidth: This defines the minimum image width. The default value is 2; 

o) rowStrings: This property is a QStringList and holds the set of string values used to populate values 

for the rowname macro; 



QE Framework – Widget Specifications 
 

 

 
      Page:17 of 78 

 
 

p) colMacroPrefix: this defines the prefix for the two column related macros.The default prefix is COL 

and the default macro names are thus COL and COLNAME.The col values are numeric and start from 

the colNumberOffset value.The column name values are defined by the colStrings property; 

q) colNumberOffset: This defines the first column number. The default value is 1; 

r) colNumberWidth: This defines the minimum image width. The default value is 2; and 

s) colStrings: This property is a QStringList and holds the set of string values used to populate values 

for the column name macro. 

Nested QEFormGrid 

The loaded ui File may itself contain a QEFormGrid widget that in turn loads further ui files. 

Note: Care should be taken to avoid recursivly loading the same form either directly or indirectly. There 

is currently no check to prevent this and this will eventually lead to a segmentation fault. 

Examples 

Figure 8below shows an example of a nested set of QEFormGrids in designer. 

The ccg_unit.ui form (upper left in the figure) is a basic form with one QESubstitutedLabel (labelText is 

$(CCG)), and two QELabels for displaying cold cathode gauge PVs. The associated variable properties are 

specified as SR$(SECTOR)CCG$(CCG):STATUS and SR$(SECTOR)CCG$(CCG):PRESSURE_MONITOR. 

The ccg_sector.ui file (2nd form from top) contains one QEFormGrid object. The relevant properties are 

show on the upper right. Note worthy is that the uiFile property specifies ccg_unit.ui form described in 

the previous paragraph, and that the rowMacroPrefix property is set to CCG, and thus the CCG macro is 

defined as "01", "02", and "03" for each row respectively. 

The ccg_all.ui file (lower left in the figure) contains one QEFormGrid object. The relevant properties are 

show on the lower right. Note the uiFile property specifies ccg_sector.ui form described in the previous 

paragraph, and that the slotMacroPrefix property is set to SECTOR, and thus the SECTOR macro is 

defined as "01", "02", ..."14" for each slotrespectively. 

Figure 9below shows the form as presented by qegui. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:18 of 78 

 
 

 

Figure 8 QEFormGrid in designer 

 



QE Framework – Widget Specifications 
 

 

 
      Page:19 of 78 

 
 

 

Figure 9 QEFormGrid example 

QEFrame and QEPvFrame 
The QEFrame widget provides a minimalist extension to the QFrame widget. Like the QEGroupBox 

widget it provides user level enabled and user level visibility control to the frame but more significantly 

to all the widgets enclosed within the QEFrame container as well. 



QE Framework – Widget Specifications 
 

 

 
      Page:20 of 78 

 
 

A QEFrame can also have up to 8 background images, set by properties pixmap0, pixmap1, ..., pixmap7. 

The pixmap property is deprecated and not available in designer, and is an alias for pixmap0 .is 

deprecated. The image, if any, associated with pixmap0 is used.  

Two properties ‘pixmap0’ and ‘scaledContents’ allow an image to be specified and scaled if required in 

exactly the same way these properties work in a QLabel widget. A background image is particularly 

useful in GUIs where components are placed over a schematic. If the ‘scaledContents’ property is set, 

the pixmap will be scaled to fill the QEFrame. If the frame’s contents relates to a position on the 

background image, the contents should be managed by a layout in such a way that the components 

remain positioned over the appropriate point in the background image as the frame is resized. 

Alternatively, the frame may be set to a fixed size. 

The QEPvFrame class inherited directly from QEFrame and allows the specification of a process variable 

using the ‘variable’ and ‘arrayIndex’ properties. The variable is subscribed for as an integer, and 

provided the value is in the range 0 to 7 is used to select the appropriate pixmap used as background 

image. The value is not in this range, no background pixmap image is used. 

QEGeneralEdit 
The QEGeneralEdit widget is a general purpose scalar PV edit widget. Whilst this widget may be 

included in any form, it is primarily intended for use in one of the qegui's built in forms. When the user 

level is engineer, the standard PV context menu is extended to include "Edit PV", as per Figure 10below. 

 

Figure 10 Modified Context Menu  -  Engineer User Level 

When selected, this causes the general edit form window to be launched, which contains a single 

QEGeneralEdit widget. The QEGeneralEdit comprises the following widgets: 

a) QLabel; 

b) QELabel; 

c) QNumericEdit and QENumericEdit; 

d) QERadioGroup; and 

e) QELineEdit. 



QE Framework – Widget Specifications 
 

 

 
      Page:21 of 78 

 
 

The text of widget (a) is set to the name of the selected PV and widget (b)'s variable name is set to the 

name of the selected PV, thus displays the selected PVs current value. Depending of the data type 

(numeric, enumeration or string) the visibility widget (c), widget (d) or widget (e) is set true respectively, 

whilst the visibility of the other two widgets is set false. As appropriate, the variable name of item (c), 

item (d) or item (e) is set to the name of the selected PV. Figure 11,Figure 12, and Figure 13 show 

examples of editing a numeric, enumeration and string PV respectively.  

 

 

Figure 11 QEGeneralEdit example for a numeric for PV 

 

 

Figure 12 QEGeneralEdit example for an enumeration PV 

 

 

Figure 13 QEGeneralEdit example for a string PV 



QE Framework – Widget Specifications 
 

 

 
      Page:22 of 78 

 
 

QEGroupBox 
The QEGroupBox widget provide a minimalist extension to the QGroupBox widget. Like the QEFrame 

widget, it provides user level enabled and user level visibility control to the group box but more 

significantly to all the widgets enclosed within the QEGroupBox container as well. 

The group box title, normally set through the QGroupBox title property, can be set through the 

QEGroupBox substitutedTitle and textSubstitutions properties. This is useful when the QEGroupBox is 

used as a sub-form, or within a sub form. An example of this is shown in Figure 14. 

 

Figure 14 QEGroupBox sub forms with macro substitutions applied to the titles 

QEImage 
The QEImage widget is now described in its own document.  

QELabel 
The QELabel widget provides a simple textual display of EPICS data. It is based on the QLabel widget and 

so shares QLabel properties such as justification. 

The QELabel widget provides many options for formatting the EPICS data as text. These formatting 

options are common to all QE widgets that display EPICS data as text. Most of these options do not 

presume any specific EPICS data type. Refer to QE_QEGuiAndUserInterfaceDesign.docx for details about 

the standard text formatting. In particular, note how local enumerations can include style hints for 

QELabel widgets. 

If the data that is being presented in a QELabel is array data, the data is limited to 10000 elements. This 

arbitrary limit allows for arrays to be presented as strings but avoids processing overhead in the case of 

very large arrays, such as high resolution images, being inappropriately used as the data source for a 

QELabel. 



QE Framework – Widget Specifications 
 

 

 
      Page:23 of 78 

 
 

If a QELabel is being used as a source of data for a QELink widget and the label text does not need to be 

viewed by a user, the ‘visible’ property can be set false so the label will not be visible. Note, it will 

remain visible when viewed within Qt Designer or Qt Designer’s preview system. 

 

Figure 15 QELabel examples with variations to QLabel properties 

 

Figure 16QELabel used to display a pump failure 

 

Figure 17 QELabels used icons to represent states 



QE Framework – Widget Specifications 
 

 

 
      Page:24 of 78 

 
 

 

Figure 18 GUI using mostly QELabels to represent numeric and textual data 

The text displayed in a QELabel reflects the value of the variable. How that text is presented reflects the 

state of the variable as follows: 

• Invalid (not connected) – The QELabel is displayed not-enabled, or ‘greyed out’. 

• In alarm condition – The QELabel is optionally displayed with an appropriate background 

colour. 

In common with any Qt widget, many aspects of the presentation can be set by the GUI designer, or 

modified by an imposed ‘style’. It is important that any changes to the presentation of the QELabel is 

compatible with the display of the variable state.  

Display of alarm state is optional – Display of alarm state is on by default. It may be appropriate to turn 

display of alarm state off if the alarm state is displayed elsewhere, or the alarm state is the actual field 

being displayed. When the display of the alarm state is not selected, the default style is a slightly lighter 

than background colour. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:25 of 78 

 
 

QEDescriptionLabel 
The QEDescriptionLabel inherits directly from QELabel. It provides no additional properties or any 

additional functionality. However is does have different default values for some of the properties that 

make its appearance more like a QLabel: 

a) The default value for displayAlarmStateOption is "Never" (as opposed to "Always"); 

b) The defaultStyle property is clear (as opposed to lighter than background); 

c) The font size is 8 (as opposed to 9); and 

d) The default indent value is -1 (as opposed to 6). 

This widget is intended for textual labels, the content being provided by the .DESC field of a record or 

any other string PV. 

QELCDNumber 
The QELCDNumber widget provides an EPICS aware monitor widget based the standard QLCDNumber 

widget. Specifically, the QELCDNumber widget inherits directly from QEFrame (which provides many of 

the standard EPICS Qt related properties) and contains a single internal QLCDNumber widget to provide 

the LCD display functionality. Due to the nature of the QLCDNumber widget ,the QELCDNumber widget 

is only suitable for numeric PV values, and there is no option to display the PV’s engineering units.  

See Figure 19 QELCDNumber properties below. 



QE Framework – Widget Specifications 
 

 

 
      Page:26 of 78 

 
 

 

Figure 19 QELCDNumber properties 

QELineEdit 
The QELineEdit widget is now described separately in its own document. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:27 of 78 

 
 

QELink 
The QELink widget is now described separately in its own document. 

QECalcout 
The QECalcout widget may be used instead of and/or in conjunction with the QELink widget. This widget 

can accept up to 12 value (double or int) signals from other widgets (QE and none-QE widget) and 

performs a calculations to both generate the output signal and to determine if the output signal should 

be sent. The widget name was chosen because of the functional similarity to the calcout record. 

Likewise, the property names, where applicable, were chosen to match the calcout record. 

The QECalcout widget can be make visible at all times by setting the ‘visible’ property. The widget is 

based on a QLabel and the displayed text is the same as the out (QString) signal. 

As with QELink, this widget mitigates the need to create control PVs with the sole purpose to support 

the GUI. Conversely, while it is tempting to use this widget to quickly and easily do GUI-side calculations, 

you should ask yourself whether this should really be done in an IOC?  Such a PV can then be archived, 

alarmed, plotted and be available to the rest of the control system in general. 

QELog 
The QELog widget provides a destination for messages generated by other QE widgets, or other widgets 

and applications using the QE framework. Messages may be generated due to user actions such as 

changing user level, data issues such as an invalid variable name, and application errors. 

The QELog widget receives and displays messages from the QE framework message system. Any 

application or widget can generate or consume these messages. For example, the QEGui application 

displays QE messages in its status bar. 

Refer to ‘Error! Reference source not found.’ (page Error! Bookmark not defined.) for a more general 

discussion on how the QELog widget is used as part of the QE framework message logging system. 

 

Figure 20 QELog example 



QE Framework – Widget Specifications 
 

 

 
      Page:28 of 78 

 
 

The QELog widget is designed to be dropped on a form and automatically catch messages from QE 

widgets on the same form, or in sub forms. Alternately, it can be used to filter messages from specific 

sets of QE widgets and forms. 

The logged messages can be saved or cleared by the user. The user can also select the type of messages 

logged from a message filter. Note, the message filter viewed by the user is used by the user to filter 

message content. For example, the user can select only information messages. Filter properties are also 

available to filter messages based on the source of the message, rather than content. 

Properties of the QELog widget allow: 

• Selective display of message time, type and content. 

• Presentation of the ‘Clear’ and ‘Save’ buttons and the message filter. 

• Message type colour selection. 

• Selection of the message filtering based on the source of the message. Note, this is different to 

the message filter presented to the user which allows the user to filter based on message type. 

Each QE widget can be given a message source ID (the messageSourceId property). The GUI designer is 

free to allocate any ID to any widget. IDs do not need to be unique, so a set of widgets might have the 

same message source ID if required. 

Each QEForm widget also has a unique message form ID allocated by the QE framework. 

QELog widgets can be set up to filter messages based on the message source ID (the QE widget or set of 

widgets it came from) and the QEForm that widget generating the message is in. The filtering is as 

follows: 

• Form filtering: 

o None - Never match based on the form ID 

o Match – Use the message if message came from a widget in the same form as the 

QELog widget, or from a sub form. Note, Messages are accepted from sub forms 

because QEForms themselves filter messages and rebroadcast them as their own. 

o Any – Always use the message. When this option is selected, message source filtering, 

below, is irrelevant. 

• Message source filtering: 

o None – Never match based on message source ID 

o Match – Use the message if the message came from a widget with the same message 

source ID. 

o Any - Always use the message. When this option is selected, form filtering, above, is 

irrelevant. 



QE Framework – Widget Specifications 
 

 

 
      Page:29 of 78 

 
 

By default a QELog widget form filter is set to ‘Match’ and the message source filter is set to ‘None’. 

These are the settings required to allow a QELog widget to be dropped onto a form to display all 

messages from widgets on the form, including those within sub forms. 

 

QELogin 
The QELogin widget allows a user to select one of three user levels: ‘User’, ‘Scientist’, and ‘Engineer’. 

User levels affect the behaviour of the QEGui application and most QE widgets. 

The QEGui application uses the current user level to control if menu items and tool bar buttons are 

enabled or visible. Refer to ‘Error! Reference source not found.’ (page Error! Bookmark not defined.) 

for details. 

MostQE widgets can be set to use the current user level to control if the widget is enabled, visible, or if 

a particular style string is applied. Refer to ‘Error! Reference source not found.’ (page Error! Bookmark 

not defined.) for details on how user levels can control access to GUI components. The QELogin widget 

can be dropped into any QUI form, but provides some features that allow it to be effectively used as the 

basis for a user level dialog box. 

 

Figure 21 QELogin widget being used to set the user level within the QEGui application 

The QEGui application uses a QELogin widget in the ’File -> User Level’ menu option as shown in Figure 

21. Generally, therefore, GUIs presented in QEGui do not need to include a QELogin widget, except 

perhaps in ‘status only’ mode to indicate the current user level. If not using QEGui, QELogin widgets can 

be dropped into a GUI form or used programmatically to manage user level. 



QE Framework – Widget Specifications 
 

 

 
      Page:30 of 78 

 
 

The QELogin widget emits a ‘login’ signal when a user successfully changes the user level. If the QElogin 

widget is being used within a dialog box, this signal can be connected to the dialog box ‘accept’ slot to 

close the dialog box. 

If defined the QELogin will use an application wide set of user level passwords which can be set up using 

the QE framework. The QEGui application uses the QE framework to set passwords. The QEGui 

application allows these passwords to be set when the ‘Edit’ menu is enabled. If no global passwords 

have been set using the QE framework the QELogin widget will use its own ‘user’, ‘scientist’, and 

‘engineer’ level password properties. Using the QELogin widget password properties makes sense when 

the application does not set global passwords through the QE framework, and when there is only one 

QELogin widget in use. The QEGui application uses a QELogin widget in the ’File -> User Level’ menu 

option. 

The QELogin widget can be used in a ‘status only’ mode which simply displays the current user level. 

When not in ‘status only’ mode the QELogin provides controls for a user to change the user level. The 

QEWidget widget operates in ‘compact mode’ by default where the ‘Login’ button must be pressed to 

open a dialog box presenting all the user level selection fields. When not in ‘compact mode’ the QELogin 

widget presents all the user level selection fields. 

Figure 22 shows several versions of the same GUI containing a QELogin widget. The QELogin widget in 

the first is in ‘status only’ mode, the other two have controls for the user to change the user level with 

the second in ‘compact mode’ (the default). (Note, the user level is also different in each example 

causing other elements of the GUI to be displayed or enabled.) 

 

Figure 22 QELogin widgets in various modes and user levels 



QE Framework – Widget Specifications 
 

 

 
      Page:31 of 78 

 
 

The QELogin widget is based on a QFrame. In addition the QELogin widget has the following properties: 

• statusOnly 

If set, the current user level only is presented. No controls will be shown to the user. 

• compactStyle 

If set, and not in ‘status only’ mode, the controls will consist of only a ‘Login’ button. Pressing 

the ‘Login’ button will display a dialog box with all the controls required for changing the user 

level. 

• userPassword, scientistPassword, engineeringPassword 

These passwords, if present, must be entered to change to the appropriate user level. These 

passwords are ignored if the QE framework has been used by the application to set up 

application wide passwords. The QEGui application is an example where application wide 

passwords can be set. 

QNumericEdit and QENumericEdit 
The QNumericEdit and QENumericEdit widgets are now described in their own document. 

QEPeriodic 
The QEPeriodic widget is used to associate variable values with elements and allow a user to read or 

write values by element selection. 

Alternatively, the QEPeriodic widget can be used independently of EPICS variables, using signals and 

slots to set an element, or to obtain a user selection of an element. Note, most of the following 

description explains the QEPeriodic widget’s interaction when EPICS variables are defined. 

For example, a two axis reference foil stage may be controlled with a QEPeriodic widget. Each element 

on the reference foil stage can be placed in the beam by setting the position on the two motors 

controlling the stage. Using the QEPeriodic widget the user can get a direct reading of which element is 

in the beam, or move an element into the beam by selecting it from a dialog containing a periodic table. 

Alternatively, using a QEPeriodic widget a variable holding ionization energy may be set directly by a 

user selecting an element from a dialog containing a periodic table. 



QE Framework – Widget Specifications 
 

 

 
      Page:32 of 78 

 
 

 

Figure 23 QEPeriodic used for both read-back and control by element. 

A property determines if the user is presented with a read-back label, a write button, or both. 

• PresentationOptions (Default is buttonAndLabel) 

When the read-back label is enabled the widget reads the required variables and presents a label 

displaying the element associated with the values read. An example of this is shown in Figure 24. The 

two properties defining the one or two variables use to update the label are: 

• readbackLabelVariable1 

• readbackLabelVariable2 

When the write button is enabled, the widget presents a button displaying the currently selected 

element. When pressed, a dialog containing a periodic table is displayed allowing the user to select an 

element. When the user selects an element from the table, the widget writes the associated values. An 

example of this is shown in Figure 25.The two properties defining the one or two variables written to 

are: 

• writeButtonVariable1 

• writeButtonVariable2 



QE Framework – Widget Specifications 
 

 

 
      Page:33 of 78 

 
 

 

Figure 24 QEPeriodic widget used to represent variables by element in a read only mode. 

 

Figure 25 QEPeriodic widget used to manipulate variables by element selection 

The QEPeriodic widget associates an element to one or two variable values by comparing the variable 

values to arbitrary values set up for each element at design time, or to intrinsic attributes of the 

element such as ionization energy or melting point. The associations available are: 

- Number 

- Atomic weight 

- Melting point 

- Boiling point 

- Density 

- Group 

- Ionization energy 

- User value1 (defined in the userInfo property)  



QE Framework – Widget Specifications 
 

 

 
      Page:34 of 78 

 
 

- User value2 (defined in the userInfo property)  

 

The following properties determine how the widget associates each variable to the each element: 

• variableType1 (default is userValue1) 

• variableType2 (default is userValue2) 

The widget is typically configured at design time to associate one or two arbitrary values with each 

element of interest. Alternatively, the widget can be configured to associate one or two values with 

intrinsic attributes of the element. With these associations in place a user can view or write to variables 

by element reference. 

When configured to match an element by comparing the variable values to arbitrary values for each 

element (which is the default), these arbitrary values can be defined at design time and stored within 

the QEPeriodic widget, or in a file referenced by the widget. The three relevant properties are: 

• userInfo An XML string defining these values. 

• userInfoFile A file name of a file containing XML defining these values. 

• userInfoSourceOption If ‘userInfoSourceText’ then the ‘userInfo’ property is used to define the 

values. If ‘userInfoSourceFile’ then the XML in file specified is used to specify the values. 

The form of this XML is shown in the following example: 

<elements> 

<element number="5" enable="yes" value1="58.498" value2="2" text="BN powder"/> 

<element number="6" enable="yes" value1="45.676" value2="2" text="HOPG"/> 

<element number="7" enable="yes" value1="58.498" value2="2" text="BN powder"/> 

... 

... 

... 

</elements> 

While the ‘userInfo’ property, or the contents of the file specified by the ‘userInfoFile’ property, may be 

edited directly, it is easier to use the User Info editor shown in Figure 26. This editor may be invoked by 

right clicking on the QEPeriodic widget in ‘Designer’ and selecting ‘Edit User Info...’.Figure 27 details 

shows what can be configured for each element as well as the variable values to match. Note, if the 

element is not enabled, the user will not be able to select this element (it will be greyed out in the 

selection dialog) and it will never match and be displayed in the read-back label). When the editor is 

closed, the ‘userInfo’ property is updated if the ‘userInfoSourceOption’ property is set to 

‘userInfoSourceText’ or the contents of the file specified by the ‘userInfoFile’ property is updated if the 

‘userInfoSourceOption’ property is set to ‘userInfoSourceFile’. Note, the file will not be created if it does 

not exist. 



QE Framework – Widget Specifications 
 

 

 
      Page:35 of 78 

 
 

As well as defining the values associated with the element, some text may also be defined which will be 

emitted by the dbElementChanged and dbAtomicNumberChanged signals when the read-back label 

updates. This may be, for example, connected to a standard QLabel setText slot as shown in Figure 23. 

 

Figure 26 Editing the QEperiodic userInfo property - the relationship between each element and variable values 

 

Figure 27 Editing the QEPeriodic userInfo property - what is associated with each element 

A tolerance can be specified for each of the associated variables so each element will match a small 

range of values. The tolerance is set to be marginally larger than the positional error of the system being 

measured. The tolerance is defined for each variable by the properties: 

• variableTolerance1 

• variableTolerance1 



QE Framework – Widget Specifications 
 

 

 
      Page:36 of 78 

 
 

The following signals and slots allow for use without EPICS variables defined. (Note, the signals and slots 

still function even if EPICS variables defined) 

• Slot: setElement( QString symbol ) 

              setAtomicNumber( const int atomicNumber ) 

• Signal: userElementChanged( const QString& symbol ) 

              userAtomicNumberChanged( const int atomicNumber ) 

Note, the userElementChanged() and signals userAtomicNumberChanged() will be emitted as user 

selects an element. This differs from the dbElementChanged() and dbAtomicNumberChanged() signals 

which is emitted when the current is set due to an EPICS value change. 

A colourised property (Boolean, default false) now allows the element category to be indicated buy a 

pale, not too intrusive colour. Note, this property affects the run-time dialog only. The design-time 

configuration dialog is always colourised. 

QEPlot 
The QEPlot widget is now described in its own document. 

QEPlotter 
The QEPlotter widget is now described in its own document. 

QEPushButton, QERadioButton and QECheckBox 
General description: 

The QEPushButton, QERadioButton and QECheckBox widgets provide the following non-exclusive 

functions: 

• Write to a variable 

• Read from a variable 

• Issue a command to the operating system 

• Open a new GUI form. 

• Emit a signal 

If the properties used to define any or all of these functions are set up, the functions will be carried out. 

All QE button like widget types are based on QEGenericButton and on QAbstractButton (through 

QPushButton, QRadioButton and QCheckBox). QEPushButton, QERadioButton and QECheckBox widgets 

share most properties and it is mainly the way the buttons are presented that differentiates them. 



QE Framework – Widget Specifications 
 

 

 
      Page:37 of 78 

 
 

Generally, QERadioButton and QECheckBox widgets will be shown as checkable, and properties related 

to the checked state are more likely to be used for QERadioButton and QECheckBox widgets. 

Various data values can be written on any or all or the following button actions: 

• Press A mouse press with the pointer over the button 

• Release A mouse release with the pointer over the button 

• Click A press and release while over the button 

By default, values are written on a button click. A click will be accompanied with a press and release. 

Writing values on Press and Release typically allows a value to be set momentary, while the button is 

held down. In this case, no data would be written on the click. 

Use of enumerated values: 

Data formatting properties are used for both reading and writing data. If enumeration values (local, or 

from the database) are involved in the formatting specified, the values written must be compatible with 

this formatting. 

Before considering how QE buttons use enumerated values, if you simply want to write 0 or a 1 to a 

variable, set the ‘format’ property to ‘Integer’. The defaults for the properties defining the values to 

write (‘clickText’, ‘clickCheckedText’, ‘presstext’, ‘releaseText’) are all integers (0 or 1). With the ‘format’ 

property to ‘Integer’, these values will all just work as they are. 

The QEPushButton widget can display variable data in the button label and, like many QE widgets, 

standard formatting will be applied to the variable data using properties such as the ‘format’, 

‘precision’, or ‘localEnumeration’ properties (See ‘Error! Reference source not found.’ - page Error! 

Bookmark not defined. for full details on formatting for presentation). While these formatting 

properties are only used for variable presentation in the QEPushButton, they are used by all QE buttons 

when writing data (as do most QE widgets that write data). These properties will determine how the 

text written will be formatted. If the ‘format’ property is set to ‘Default’ and the database provides a set 

of enumeration values, of the ‘format’ property is set to ‘LocalEnumeration’, then the text written must 

match the enumerations. 

If a list of enumerated values has been constructed for the variable being written to, then any value 

written must match a value from the enumeration list. The enumeration list may have originated from 

the database or be stored locally in the GUI file. The ‘pressText’, ‘releaseText’, ‘clickText’, and 

‘clickCheckedText’ properties must all match one of the enumeration values or an error will be 

displayed when a write is attempted. If an enumeration list was build from the database then the 

following error will be displayed: 



QE Framework – Widget Specifications 
 

 

 
      Page:38 of 78 

 
 

Write failed. String not written was 'your string'. Value does 

not match an enumeration value from the database. 

If an enumeration list was stored in the GUI file then the following error will be displayed: 

Write failed. String not written was 'your string'. Value does 

not match a local enumeration value. 

Enumeration lists will be present and used to check any string written in the following scenarios: 

• The ‘format’ property is set to ‘LocalEnumeration’ and ‘localEnumeration’ property is defined. 

• The ‘subscribe’ property is set to true (checked), the ‘format’ property is set to ‘Default’ and 

enumeration values were successfully read from the database for the variable. 

Conversely, enumeration lists will not present and string will be written without validation by the 

button in the following scenarios: 

• The ‘format’ property is set to ‘LocalEnumeration’ but no ‘localEnumeration’ property is 

defined. 

• The ‘subscribe’ property is set to false (unchecked), the ‘format’ property is not set to ‘Default’ 

or enumeration values were not successfully read from the database for the variable. 

In these scenarios any string in the pressText’, ‘releaseText’ and ‘clickText’ properties is written as is and 

it is up to the database to accept or reject the string. 

Signals on user action: 

The same value that would be written to a variable is also interpreted as an integer and emitted as a 

‘pressed’, ‘released’ or ‘clicked’ signal. This is useful, for example, for selecting a tab in a tab widget or a 

page in a toolbox widget. 

Signal on program completion: 

A ‘programComplete’ signal is emitted when a program initiated by a QE button has completed. 

For example, the standard Qt ‘clicked’ signal can disable controls that should not be used while a 

program is running. The ‘programComplete’ signal can re-enable the controls. 

Why QE buttons can open a new GUI form: 

While QEPushButton, QERadioButton and QECheckBox widgets can open a new GUI form when set up 

correctly without any action on the part of the application that created them, this functionality is mainly 

so the button functionality can be tested from the Designer ‘preview’ window. Applications using 

QEPushButton, QERadioButton and QECheckBox widgets should provide a slot to create new windows 



QE Framework – Widget Specifications 
 

 

 
      Page:39 of 78 

 
 

through the ContainerProfile class. The application can then respect the creation options set up with the 

new button and manage the window better – for example it may wish to add the window to its window 

menu. The QEGui application provides such a slot through the ContainerProfile class. Refer to the QEGui 

application and the Container Profile class for more details. 

To write to a variable, the following properties are used: 

• variable 

If present, a value will be written to the variable when the button is operated. 

The value of this variable can also be used to update the button text or image. 

• variable Substitutions 

Macro substitutions to apply to ‘variable’ and ‘altReadbackVariable’ properties. Note, the 

variableSubstitutions property is also applied to pressText, releaseText, and clickText properties 

prior to writing, is applied to the ‘labelText’ property if present, and is used in any GUI filename 

and passed on to any new GUI launched by the QE button. 

• password 

Password user will need to enter before any action is taken. 

• confirmAction 

If true, a dialog will be presented asking the user to confirm if the button action should be 

carried out 

• confirmText 

If confirmAction property is true, this text will be presented to the user in the confirmation 

dialog. The default text is "Do you want to perform this action?" 

• writeOnPress 

If true, the 'pressText' property is written when the button is pressed. Default is false. 

• writeOnRelease 

If true, the 'releaseText' property is written when the button is released. Default is false 

• writeOnClick 

If true, the 'clickText' property is written when the button is clicked. Default is true 

• pressText 

Value written when user presses button if 'writeOnPress' property is true. 

This property is also interpreted as an integer and used in the ‘pressed’ signal. 

Note, the variableSubstitutions property is also applied to this property before writing. For 

example, if the property contains MY$(ITEM) and the variable substitutions contains ITEM=CAR, 

MYCAR will be written. 

Note, for variables with enumerated values in the database, the text must match one of the 

enumerated values. So if a variable is set up to display ‘Off’ and ‘On’ instead of 0 or 1, then the 

press text must be ‘Off’ or ‘On’, not 0 or 1. 

• releaseText 

Value written when user releases button if 'writeOnRelease' property is true. 



QE Framework – Widget Specifications 
 

 

 
      Page:40 of 78 

 
 

This property is also interpreted as an integer and used in the ‘released’ signal. 

Note, the variableSubstitutions property is also applied to this property before writing. For 

example, if the property contains MY$(ITEM) and the variable substitutions contains ITEM=CAR, 

MYCAR will be written. 

Note, for variables with enumerated values in the database, the text must match one of the 

enumerated values. So if a variable is set up to display ‘Off’ and ‘On’ instead of 0 or 1, then the 

press text must be ‘Off’ or ‘On’, not 0 or 1. 

• clickText 

Value written when user clicks button if 'writeOnClick' property is true and the button is 

unchecked. 

This property is also interpreted as an integer and used in the ‘clicked’ signal when the button is 

unchecked. 

Note, the variableSubstitutions property is also applied to this property before writing. For 

example, if the property contains MY$(ITEM) and the variable substitutions contains ITEM=CAR, 

MYCAR will be written. 

Note, for variables with enumerated values in the database, the text must match one of the 

enumerated values. So if a variable is set up to display ‘Off’ and ‘On’ instead of 0 or 1, then the 

press text must be ‘Off’ or ‘On’, not 0 or 1. 

The default ‘clickText’ varies to suit the default ‘checkable’ property of the QEButton type. For 

QEPushButton the default ‘clickText’ is "1" which suits the default ‘checkable’ property which is 

‘false’. For QERadioButton and QECheckBox the default is ‘clickText’ is "0" which suits the 

default ‘checkable’ property which is ‘true’. If the ‘checkable’ property is changed the default 

‘clickText’ property is likely to be inappropriate. 

• clickCheckedText 

Text used to compare with text written or read to determine if push button should be marked 

as checked. 

Note, must be an exact match following formatting of data updates. 

When writing values, the 'pressText', 'ReleaseText', or 'clickedtext' must match this property to 

cause the button to be checked when the write occurs. 

o Good example: formatting set to display a data value of '1' as 'On', clickCheckedText is 

'On', clickText is 'On'. In this example, the push button will be checked when a data 

update occurs with a value of 1 or when the button is clicked. 

o Bad example: formatting set to display a data value of '1' as 'On', clickCheckedText is 

'On', clickText is '1'. In this example, the push button will be checked when a data 

update occurs with a value of 1 but, although a valid value will be written when clicked, 

the button will not be checked when clicked as '1' is not the same as 'On'. 

This property is also interpreted as an integer and used in the ‘clicked’ signal when the button is 

checked. 

Note, the variableSubstitutions property is also applied to this property before writing. For 



QE Framework – Widget Specifications 
 

 

 
      Page:41 of 78 

 
 

example, if the property contains MY$(ITEM) and the variable substitutions contains ITEM=CAR, 

MYCAR will be written. 

The default ‘clickCheckText’ varies to suit the default ‘checkable’ property of the QEButton type. 

For QEPushButton the default ‘clickCheckText’ is "0" which suits the default ‘checkable’ 

property which is ‘false’. For QERadioButton and QECheckBox the default is ‘clickText’ is 

"1"which suits the default ‘checkable’ property which is ‘true’. If the ‘checkable’ property is 

changed the default ‘clickCheckText’ property is likely to be inappropriate. 

To read from a variable, the following properties are used: 

• subscribe 

If checked, the button will read and present the current value defined by the ‘variable’ property. 

If the ‘altReadbackVariable’ property is define, it is used in preference to the ‘variable’ property 

• variable 

If present, a value will be written to the variable when the button is operated. 

The value of this variable can also be used to update the button text or image. 

• altReadbackVariable 

If present, the value of this variable will be used to update the button text or image if required. 

• variable Substitutions 

Macro substitutions to apply to ‘variable’ and ‘altReadbackVariable’ properties.Note, the 

variableSubstitutions property is also applied to pressText, releaseText, and clickText properties 

prior to writing, is applied to the ‘labelText’ property if present, and is , and is used in any GUI 

filename and passed on to any new GUI launched by the QE button. 

• updateOption 

Used to determine if the data is presented textually using the button’s ‘text’ property, or 

graphically using the button’s ‘icon’ property, both textually and graphically, or if the data 

updates the buttons checked state. 

Options are: 

o Text Data updates will update the button text 

o Icon Data updates will update the button icon 

o TextAndIcon Data updates will update the button text and icon 

o State Data updates will update the button state (checked or unchecked) 

o TextAndState  Data updates will update the button text and state 

o IconAndState  Data updates will update the button icon and state 

o TextIconAndState Data updates will update the button text, icon and state 

• Pixmap0 to pixmap7 

Pixmap to display if updateOption is Icon or TextAndIcon and data value translates to an index 

between 0 and 7. 



QE Framework – Widget Specifications 
 

 

 
      Page:42 of 78 

 
 

• alignment 

Set the buttons text alignment. 

Left justification is particularly useful when displaying quickly changing numeric data updates. 

General presentation: 

• labelText 

Button label text (prior to substitution). 

Macro substitutions from the ‘variableSubstitutions’ property will be applied to this text and the 

result will be set as the button text. 

Used when data updates are not being represented in the button text. 

For example, a button in a sub form may have a 'labelText' property of 'Turn Pump 

$(PUMPNUM) On'. 

When the sub form is used twice in a main form with substitutions PUMPNUM=1 and 

PUMPNUM=2 respectively, the two identical buttons in the sub forms will have the labels 'Turn 

Pump 1 On' and 'Turn Pump 2 On' respectively. 

A system command can be issued on a button click using the following properties: 

• program 

Program to run when the button is clicked. 

No attempt to run a program is made if this property is empty. 

Substitutions are applied to the program name. 

• arguments 

Arguments for program specified in the 'program' property. 

Substitutions are applied to the arguments. 

• programStartupOption 

Option for how program is managed. 

o None: Start and ignore the program 

o Terminal: Start a terminal and run the program in the terminal 

o LogOutput: Start the program and log its output to the QE message system 

Content logged to the QE message system can be viewed in the Message Log in the 

QEGui application, refer to ‘Error! Reference source not found.’ (page Error! Bookmark 

not defined.) for more details on how to view content logged to the QE message 

system. 

A ‘programComplete‘ signal is emitted by QE buttons when the system command completes. 

Some Windows commands (for example, dir) are not provided by separate applications, but by the 

command interpreter itself. If you specify these commands as the ‘program’ directly, it won't work. 

One solution is to execute the command interpreter itself (cmd on some Windows systems), and ask 



QE Framework – Widget Specifications 
 

 

 
      Page:43 of 78 

 
 

the interpreter to execute the desired command. For example, the specify the ‘program’ as ‘cmd 

dir’. Another solution is to run the command from within a terminal (‘programStartOption’ = 

‘Terminal’) where a command interpreter is stared automatically. 

Note, the ‘arguments’ property is only provided for convenience. It is simply appended to the 

‘program’ property. An entire command can be specified in the ‘program’ property if required. 

Examples: 

- Start an internet browser with a specified URL: 

program: firefox 

arguments: www.google.com 

programStartupOption: None 

or 

program: firefoxwww.google.com 

arguments: 

programStartupOption: None 

- List the contents of the current directory: (windows example) 

In this example, the ‘programStartupOption’ property is set to ‘Terminal’ so the directory output 

can be seen. Also, the ‘program’ argument does not need to start the command interpreter 

(cmd dir) as a command interpreter is started for the terminal. 

program: dir 

arguments: 

programStartupOption: Terminal 

- List the contents of the current directory: (windows example) 

In this example, the ‘programStartupOption’ property is set to ‘LogOutput’ so the directory 

output can be seen. Also, the ‘program’ argument needs to start the command interpreter (cmd 

dir) as the dir command is a function built into the command interpreter. 

program: cmd dir 

arguments: 

programStartupOption: LogOutput 



QE Framework – Widget Specifications 
 

 

 
      Page:44 of 78 

 
 

- Start a python script: (windows example) 

Output logged in the QE message system. 

program: python "C:\some path\script.py" 

arguments: 

programStartupOption: LogOutput 

- Start a python script: (windows example) 

Output in a terminal window. 

program: python "C:\some path\script.py" 

arguments: 

programStartupOption: Terminal 

- Start a python script: (windows example) 

Output in a terminal window as above, but the terminal window is created by the Windows 

‘cmd start’ command in the ‘program’ property. Note, the ‘start’ command is built into the 

Windows command interpreter. 

program: cmd start python "C:\some path\script.py" 

arguments: 

programStartupOption: None 

A new GUI can be started on a button click using the following properties: 

• guiFile 

File name of GUI to be presented on button click. 

QEWidgets use a common set of rules for locating a file. Refer to Error! Reference source not 

found. (page Error! Bookmark not defined.) for details. 

• creationOption 

Creation options when opening a new GUI. Open a new window, open a new tab, or replace the 

current window. 

The creation option is supplied when the button generates a newGui signal. 

Application code connected to this signal should honour this request if possible. 

When used within the QEGui application, the QEGui application creates a new window, new 

tab, or replaces the current window as appropriate. 

Options are: 

o Open Replace the current GUI with the new GUI 

o NewTab Open new GUI in a new tab 

o NewWindow Open new GUI in a new window 

o DockTop Open new GUI in a top dock 

o DockBottom Open new GUI in a bottom dock 



QE Framework – Widget Specifications 
 

 

 
      Page:45 of 78 

 
 

o DockLeft Open new GUI in a left dock 

o DockRight Open new GUI in a right dock 

o DockTopTabbed Open new GUI in a tabbed top dock 

o DockBottomTabbed Open new GUI in a tabbed bottom dock 

o DockLeftTabbed Open new GUI in a tabbed left dock 

o DockRightTabbed Open new GUI in a tabbed right dock 

o DockFloating Open new GUI in a floating dock 

• customisationName 

This name will be used to select a set of window customisations including menu items and tool 

bar buttons. 

Applications such as QEGui can load .xml files containing named sets of window customisations. 

This property is used to select a set loaded from these files. 

The selected set of customisations will be applied to the main window containing the new GUI. 

Customisations are not applied if the GUI is opened as a dock. 

• variableSubstitutions 

The variableSubstitutions property is applied to the GUI file name and added to the list of macro 

substations provided to the new form being opened by the QE button. The macro substitutions 

present in the variableSubstitutions property do not take precedence over any other macro 

substitutions already defined by any QEForm containing the button, or by the application. Note, 

the variableSubstitutions property is also used to provide default substitutions for the variable 

names, is applied to pressText, releaseText, and clickText properties prior to writing, and is 

applied to the labelText property if present. 

• prioritySubstitutions 

The prioritySubstitutions property is added to the list of macro substations provided to the new 

form being opened by the QE button. The macro substitutions present in the 

prioritySubstitutions property do take precedence over any other macro substitutions already 

defined by any QEForm containing the button, or by the application. Unlike the 

variableSubstitutions property, the prioritySubstitutions property is only added to the list of 

macro substitutions provided to a new GUI being launched by the QE button. 

The prioritySubstitutions property is particularly useful when re-opening the form containing 

the QE button, but with different macro substitutions. The variableSubstitutions property can’t 

be used for this since the macro substitutions it contains do not take precedence over existing 

macro substitutions. 



QE Framework – Widget Specifications 
 

 

 
      Page:46 of 78 

 
 

 

Figure 28 QEPushButton, QERadioButton and QECheckBox examples 

Applying a style based on how the button is used 

A dynamic property “StyleOption” is defined with a value of “PV”, “Program”, “UI” and “”. This property 

can be used for stylesheet configuration to configure a different style to its button. For example, if the 

widget is configured to write/read PV, the value will be “PV”; if it is configured to run a program, the 

value will be “Program”; if it is configured to load a ui form, the value wil be “UI”; otherwise, the value 

will be “” as a default. To avoid a possible conflict, the priority has been set in the order of 

writing/reading PV, running a program and loading a ui file.  

Stylesheet example: 

QEPushButton[StyleOption=”PV”]     {color:purple} 

QEPushButton[StyleOption=”Program”]{color:red} 



QE Framework – Widget Specifications 
 

 

 
      Page:47 of 78 

 
 

QEPushButton[StyleOption=”UI”]     {color:green} 

QEPushButton                       {color:blue} 

QEPushButton:!enabled              {color:grey} 

 

Figure 29 Conditional Style 

 

QEMenuButton 
The QEMenuButton widget is described in a separate document. Please see the associated 

QEMenuButton.pdf document. 

QEPvLoadSave 
The QEPvLoadSave and QEPvLoadSaveButton widgets are now described in its own document. Please 

see the associated QEPvLoadSave.pdf  file. 

QEPvLoadSaveButton 
The QEPvLoadSaveButton and QEPvLoadSave widgets are now described in its own document. Please 

see the associated QEPvLoadSave.pdf  file. 

QEPvProperties 
The QEPvProperties widget displays information about a Process Variable (PV) together with a tabular 

view of the fields and field values of the record associated with the widget’s current PV.  A typical example 

is shown in Figure 30  (this example was a snap shot of the built-in QEGui form, accessible from the "PV 

Properties" menu item). 

The features of this widget are: 



QE Framework – Widget Specifications 
 

 

 
      Page:48 of 78 

 
 

a) the NAME field: this shows the current process variable used to source which record is being probed, 
i.e. SR11BCM01:CURRENT_MONITOR. 
 

b) the VAL field: this shows the current value of the process variable. This is displayed using a QELabel, 
and as such  has all the features of a QELabel such as showing the colour coded alarm state, has a tool 
tip and the standard QEWidget context menu, and may be dragged just like a standalone QELabel; 

 
c) the HOST field shows the Channel Access server providing this process variable. This will show the 

gateway host name as opposed to the IOC host name if the PV is being viewed through an EPICS 
gateway; 

 
d) the TIME field shows the time of the last update received for the this Process Variable; 
 
e) the DBF field show the PV’s field type; 
 
f) the INDEX field show the element number and total number of elements for the PV. This widgets 

displays element numbers in the range 1 to N (as opposed to 0 to N-1, the display is for users, not C 
programmers). 
 

Note: the QE framework  currently only supports dragging and dropping, copying and pasting whole 

PV names as opposed to PV Name plus element number, so this field will always be of the form "1 / N" 

for the time being; 

g) the enumeration values section: when the DBF filed is DBF_ENUM, this shows the enumeration values 
associated with the PV. At the bottom of the enumeration values part of the display is a pale blue bar 
that my be grabbed (left clicked) and dragged up or down to decrease or increase the size of this 
section - see example in Figure 31below; and 

 
h) the field names and values table: this table is populated with the field names and the values of the 

(first element) of the field. 
 



QE Framework – Widget Specifications 
 

 

 
      Page:49 of 78 

 
 

 

Figure 30 QEPvProperties widget example examining a calc record. 



QE Framework – Widget Specifications 
 

 

 
      Page:50 of 78 

 
 

 

Figure 31 QEPvProperties widget example examining an enumeration PV. 

 

Selecting a PV name 

A PV name may be selected by any one of the following means: 

a) at design time by specifying the variableName property (together with optional substitutions); 
 
b) at run time by typing a PV name into the NAME field and pressing enter; 
 
c) by using the combo box drop down menu is select a previously used PV name; 
 
d) by dragging another EPICS aware QEWidget onto the QEPvProperties widget; 
 
e) by copying and pasting a variable name in to the QEPvProperties widget; 
 
f) by opening the context menu (right-clicking) over a table field name and selecting "Properties". The 

"<record_name>.<field_name>" becomes the selected PV. The field names and values table is 
essentially unaffected by this action; 

 



QE Framework – Widget Specifications 
 

 

 
      Page:51 of 78 

 
 

g) by opening the context menu (right-clicking) over a table value field and selecting "Properties". The 
"Properties" item is only enabled if the widget believes the contents is a valid PV name. By repeatedly 
clicking on the FLNK value field, one may follow a set of FLNK records; and 

 
h) When running from within QEGui, by opening the context menu (right-clicking) over an EPICS aware 

QEWidget and selecting "Examine Properties". This will open a new instance of the "PV Properties" 
form and then setting up the name. 

 

Selecting Displayed Field Names 

When the QEPvProperties widget is given a new PV to probe, as well as configuring the internal QELabel, 

it strips off any field name to form the under-lying record name. It then attempts to read the value of the 

"<record_name>.RTYP" pseudo field in order to determine the record type. This is a regular channel 

access DBR_STRING request as opposed to a DBR_CLASS_NAME request, and as such is not stymied by 

an intervening gateway. 

The record type is then used to access an internally held list of fields for that records type. The set of 

records with defined field list comprises all the records from base-3-14-11, most of the records from the 

synApps distribution, together with the Australian Synchrotron developed concat record, i.e. the 

following record types: 

ai, ao, aSub, asyn, bi, bo, busy, calc, calcout, camac, compress, concat, dfanout, dxp, epid, er, erevent, 

event, fanout, genSub, histogram, longin, longout mbbi, mbbiDirect, mbbo, mbboDirect, mca, motor, 

permissive, sCalcout, scaler, scanparm, sel, seq, sscan, sseq, state, status, stringin, stringout, subArray, 

sub, swait, table, timestamp, transform, vme and waveform. 

In each case, the record type’s dbd file was processed to produce simple list of field names to which was 

added the RTYP field. Only the name was extract, no other filed information is used by the QEPvProperties 

widget other than that provided via Channel Access. 

If the record type is unknown then a default list of fields is used. The default list includes the RTYPE pseudo 

field, fields common to all records plus the VAL field.   

If the environment variable QE_RECORD_FIELD_LIST specifies a file, then this file is read and will be used 

to define additional record types and/or completely replace the field set of an internally specified record 

type. It cannot be used to define extra fields for a predefined record type. The format of the file is a simple 

ASCII file consisting of: 

# example              -- comment lines – ignored 

   -- blank lines – ignored 

<<record_type1>>-- introduce record type, e.g. <<aai>> 

field_name1            -- field name, e.g. RTYP 

field_name2            -- field name, e.g. DESC 

field_name3            -- field name, e.g. SCAN 



QE Framework – Widget Specifications 
 

 

 
      Page:52 of 78 

 
 

<<record_type2>>     -- introduce record type, e.g. <<aao>> 

field_name1            -- field name, e.g. RTYP 

field_name2            -- field name, e.g. DESC 

field_name3            -- field name, e.g. SCAN 

All field names are associated with the preceding record type. 

QRadioGroup and QERadioGroup 
These widgets is now described in a separate document. 

QERecipe 
The QERecipe widget is currently under development. It will allow a user to define, save and restore a 

named set of variables and values. This would typically be used by a user to restore a system to a state 

previously identified and named by the user. 

QEScratchPad 
The QEScratchPad widget is designed and provided primarily to support the in built-in Scratch Pad form 

included in the QEGui application. However form designers may include one or more instances of this 

widget on their own forms if so desired. 

The scratch pad widget allows arbitrary process variables to be displayed in one convenient place on the 

user desktop. Up to 48 PVs may be displayed per widget instance. PVs are added to the widget 

dynamically at run time (details below), and cannot be predefined at design time as there are no 

variable properties associated with this widget. 

Three fields are displayed for each PV is added to the scratch pad, namely the PV Name itself, the value 

of the associated .DESC field plus the value of the PV. See example in Figure 32 below. 

 

Figure 32QEScratchPad displaying 3 PVs 

PVs may add added to the scratch pad by: 



QE Framework – Widget Specifications 
 

 

 
      Page:53 of 78 

 
 

a) Right clicking on an arbitrary widget to launch its context menu and then selecting 

"Show In Scratch Pad". This will open an new instance of the built-in Scratch Pad form and set 

the PV name as first entry on the form; 

b)  Dragging an arbitrary EPICS aware widget onto an empty line on a scratch pad widget (unless 

full, an empty line is always maintained at the bottom of the widget); 

c) Right clicking on an empty PV Name field to launch the context menu and selecting either 

"Add PV Name..." or "Paste PV Name"; or 

d) Right clicking on an existing PV Name field to launch the context menu and selecting 

"Edit PV Name..." 

 

QEScript 
The QEScript widget allows the user to define a certain sequence of external programs to be executed. 

This sequence may be saved, modified or loaded for future usage.Within Qt Designer, it has the 

following graphical representation (surrounded by a red rectangle): 

 

Figure 33 QEScript within Qt Designer 

 

The QEScript has the following properties (that can be controlled by the user): 

• showScriptList 

Show/hide combobox that contains the list of existing scripts created by the user 

• showNew 

Show/hide button to reset (initialize) the table that contains the sequence of programs to be 

executed 

• showSave 

Show/hide button to save/overwrite a new/existing script 



QE Framework – Widget Specifications 
 

 

 
      Page:54 of 78 

 
 

• showDelete 

Show/hide button to delete an existing script 

• showExecute 

Show/hide button to execute a sequence of programs 

• showAbort 

Show/hide button to abort the execution of a sequence of programs 

• showTable 

Show/hide table that contains a sequence of programs to be executed 

• editableTable 

Enable/disable table edition 

• showTableControl 

Show/hide the controls of the table that contains a sequence of programs to be executed 

• showColumnNumber 

Show/hide the column '#' that displays the sequential number of programs 

• showColumnEnable 

Show/hide the column 'Enable' that enables the execution of programs 

• showColumnProgram 

Show/hide the column 'Program' that contains the external programs to be executed 

• showColumnParameters 

Show/hide the column 'Parameters' that contains the parameters that are passed to external 

programs to be executed 

• showColumnWorkingDirectory 

Show/hide the column 'Directory' that defines the working directory to be used when external 

programs are executed 

• showColumnTimeout 

Show/hide the column 'Timeout' that defines a time out period in seconds (if equal to 0 then 

the program runs until it finishes; otherwise if greater than 0 then the program will only run 

during this amount of seconds and will be aborted beyond this time) 

• showColumnStop 

Show/hide the column 'Stop' that enables stopping the execution of subsequent programs 

when the current one exited with an error code different from 0 

• showColumnLog 

Show/hide the column 'Log' that enables the generation of log messages (these messages may 

be displayed using the QELog widget) 

• scriptType 

Select if the scripts are to be loaded/saved from an XML file or from an XML text 

• scriptFile 

Define the file where to load/save the scripts (if not defined then the scripts will be 

loaded/saved in a file named "QEScript.xml") 



QE Framework – Widget Specifications 
 

 

 
      Page:55 of 78 

 
 

• scriptText 

Define the XML text that contains the scripts 

• scriptDefault 

Define the script (previously saved by the user) that will be loaded as the default script when 

the widget starts 

• executeText 

Define the caption of the button responsible for starting the execution of external programs (if 

not defined then the caption will be "Execute") 

• optionsLayout 

Change the order of the widgets. Valid orders are: TOP, BOTTOM, LEFT and RIGHT. 

 

 

The following figure illustrates the QEScript widget in production: 

 

Figure 34 QEScript displaying a sequence of external programs to be executed(in this case "gedit" and "firefox") 

 

QEScalarHistogram and QEWaveformHistogram 
The QEScalarHistogram and QEWaveformHistogram provide a means to display values as a histogram, 

aka bar chart. The former may be used to display up-to 100 scalar PV values, whereas the later may 

display a single array PV – each element of the array providing one of the values for the histogram. 

Apart from that, these widgets are so similar that they are describes together. 



QE Framework – Widget Specifications 
 

 

 
      Page:56 of 78 

 
 

Figure 35 shows an example of the QEWaveformHistogram widget displaying a 500 element array. 

Where, given the width of the bar and intervening spaces (both controllable via properties) is greater 

than the available space within the widget, and scroll bar is automatically enabled/made visible which 

allows the user to scroll the histogram display. If the user moves the cursor over an element of the 

histogram, the widget sends an information message which appears on the forms status bar. The 

message contains the PV name, element index (QEWaveformHistogram only) and current value.Note: 

for user display purposes, element indices are show as "[1]" to, say, "[500]", the display being for users 

and not for a C/C++ compiler. 

The standard context menu and drag capability are supported by both forms of the histogram widget. 

 

Figure 35 QEWaveformHistogramshowing a 500 element array PV 

Properties 

The following properties are specific to QEScalarHistogram and QEWaveformHistogram: 

a) variable (QEWaveformHistogram) or  

variable1, variable2,  ... variable100 (QEScalarHistogram): defines the variable name(s) 

associated with this widget; 

b) variableSubstitutions: defines any default substitutions to be applies to the variable name(s); 

c) autoBarGapWidths: (boolean, default false) when true, the widget attempts to optimise the 

values used for the bar widths and the inter bar gaps so that the histogram best fits the 

available size; 

d) barWidth: (int, default 8) defines the bar pixel width; 

e) gap: (int, default 3) defines the pixel gap between bars; 

f) scaleMode: (enumeration, default Manual) defines how the histogram scales the displaying 

values. Options are: 

1. Manual: Use the values specified by the minimum and maximum properties; 

2. Auto: Dynamically scale to accommodate the current values being displayed; and 



QE Framework – Widget Specifications 
 

 

 
      Page:57 of 78 

 
 

3. OperationalRange: Use the (defined) LOPR and HOPR value(s) to define the range to be 

displayed. 

g) minimum: (double, default 0.0) defines the lower display range (manual mode); 

h) maximum: (double, default 10.0) defines the lower display range (manual mode); 

i) baseline: (double, default 0.0) defines the origin from where the bar is draw from (in the 

example above, this property was set to -0.06); 

j) logScale: (Boolean, default false) when true, values are displayed using a logarithmic scale; 

k) barColour: (QColor, default blue) when displayAlarmStateOption is ‘Never’, or when 

displayAlarmStateOption is ‘WhenInAlarm’ and the displayed variable is not in an alarm state, 

this property defines the colour to be used to draw the bars; 

l) drawBorder: (boolean, default true) when true each bar is drawn with a boarder; 

m) orientation: (enumeration, default Horizontal). Defines whether the histogram is drawn 

horizontally or vertically. 

NOTE: The orientation property is currently ignored. This is for a planned future enhancement. 

 

QESelector 
The QESelector widget is described in its own document. 

QEShape 
The QEShape widget is an EPICS aware widget which displays a geometric object such as a line or a 

rectangle. Attributes of the object displayed in the widget can be animated by EPICS data. For example, 

variables representing the size and position of a beam can be used to animate the dimensions and 

position of an ellipse object displayed in the widget as shown in Figure 36. In addition this example also 

uses the variable representing beam current to animate the fill colour. The higher the beam current the 

more solid the fill colour. 



QE Framework – Widget Specifications 
 

 

 
      Page:58 of 78 

 
 

 

Figure 36 QEShape displaying stored beam 

General configuration 

To use the QEShape widget, the widget is created with enough area to draw the shape. Then: 

• The required shape is selected, such as line or rectangle 

• The properties defining the shape are set such as its position, size, and line thickness. 

• One or more variables are set using properties ‘variable1’ to ‘variable6’. 

• Scales and offsets are defined for the variablesused to bring the variable values into a useful 

range for manipulating the shape. The scale and offset properties are ‘scale1’ to ‘scale6’ and 

‘offset1’ to ‘offset6’ 

• The attribute to be animated by the variable is selected using properties ‘animation1’ to 

‘animation6’ 

• Variable, scale, offset, and attribute can be set for up to six variables. The same variable can be 

used to animate more than one attribute. 



QE Framework – Widget Specifications 
 

 

 
      Page:59 of 78 

 
 

Displayed object selection 

The shapeOptions property is determines the object displayed within the widget. The following objects 

are available: 

• Line 

• Points 

• Polyline 

• Polygon 

• Rect 

• RoundedRect 

• Ellipse 

• Arc 

• Chord 

• Pie 

• Path 

Associating variable values with object attributes 

Up to 6 variables can simultaneously animate various attributes of the object displayed in the widget. As 

each variable update occurs, the value is scaled, an offset is applied, then the modified value is used to 

alter any of the following attributes, usually by multiplication: 

• Width 

• Height 

• X 

• Y 

• Transperency 

• Rotation 

• ColourHue 

• ColourSaturation 

• ColourValue 

• ColourIndex 

• Penwidth 

Variables used are set by properties ‘variable1’ to ‘variable6’. Values for each variable are scaled by 

properties ‘scale1’ to ‘scale6’. Values for each variable are offset by properties ‘offset1’ to ‘offset6’. 

Values are applied to an attribute of the object by properties ‘animation1’ to ‘animation6’. 

For example... 



QE Framework – Widget Specifications 
 

 

 
      Page:60 of 78 

 
 

- The QEShape object shown in Figure 36.contains an ellipse 400 pixels wide. 

- ‘variable1’ is set to SR10BM02IMG01:X_SIZE_MONITORwhich represents beam width and has a 

range of 0.0 to 1000.0 um. 

- ‘scale1’ is set to 0.002. 

- ‘offset1’ is set to 0.0 

- ‘animation1’ is set to ‘Width’ 

If the current beam width is 240.9 um, the ellipse will be drawn with a width of 400 x 240.9 x 0.002 = 

192 pixels 

Properties defining objects 

A common set of properties are used to define most objects that can be displayed by the QEShape 

widget. For example, the ‘point1’ property is used to hold the start of a line object or the top left of a 

rectangle object. The table below lists the relevant properties for each object: 

Object Type Property Use 

• Line point1 Line start 

point2 Line end 
lineWidth Thickness of line in pixels 
color1 to color10 Line color selected by value after scaling and 

offset. 

• Points point1 to point10 Up to 10 points displayed 

numPoints Number of points used 
lineWidth Diameter of points in pixels 
color1 to color10 Point color selected by value after scaling and 

offset. 
  

• Polyline point1 to point10 Up to 10 points defining the line segments 

numPoints Number of points used 
lineWidth Diameter of points in pixels 
color1 to color10 Line color selected by value after scaling and 

offset. 
  

• Polygon point1 to point10 Up to 10 points defining the line segments 

numPoints Number of points used 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• Rect point1 Top Left 

point2 Size 
drawBorder Set if border is required 



QE Framework – Widget Specifications 
 

 

 
      Page:61 of 78 

 
 

Object Type Property Use 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• RoundedRect point1 Top Left 

point2 Size 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• Ellipse point1 Top left of rectangle enclosing ellipse 

point2 Size of rectangle enclosing ellipse 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• Arc point1 Top left of rectangle enclosing ellipse of which arc 
is a part 

point2 Size of rectangle enclosing ellipse of which arc is a 
part 

startAngle Start angle in degrees. Zero is at 3 o’clock 
incrementing anti clockwise 

arcLength Arc span in degrees incrementing anti clockwise. 
lineWidth Line thickness of arc in pixels 
color1 to color10 Line color selected by value after scaling and 

offset. 

• Chord point1 Top left of rectangle enclosing ellipse of which 
chord is a part 

point2 Size of rectangle enclosing ellipse of which chord 
is a part 

startAngle Start angle in degrees. Zero is at 3 o’clock 
incrementing anti clockwise 

arcLength Arc span in degrees incrementing anti clockwise. 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• Pie point1 Top left of rectangle enclosing ellipse of which pie 
is a part 

point2 Size of rectangle enclosing ellipse of which pie is a 
part 



QE Framework – Widget Specifications 
 

 

 
      Page:62 of 78 

 
 

Object Type Property Use 
startAngle Start angle in degrees. Zero is at 3 o’clock 

incrementing anti clockwise 
arcLength Arc span in degrees incrementing anti clockwise. 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Line thickness of border in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

• Path point1 Start point 

point2 First control point 
point3 Second control point 
point4 End point 
drawBorder Set if border is required 
fill Set if fill is required 
lineWidth Thickness of line in pixels 
color1 to color10 Fill color selected by value after scaling and 

offset. 

 

Properties defining object views 

The ‘rotation’ and ‘originTranslation’ properties apply to all objects as they affect how the widget is 

viewed, not how it is drawn. 

By default the origin (position 0,0) of the object drawing area is located at the top left of the QEShape 

widget. This origin can be moved within the QEShape widget using the ‘originTranslation’ property. 

Since variable data is often used to scale the objects geometry, it is often useful to have the origin 

somewhere other than top left as geometry is scaled around the drawing area origin. 

In Figure 37, four QEShape widgets are shown. Each draws a 40x40 pixel ellipse object and has a 

variable animating both the ellipse width and height. The left hand pair have an ellipse starting at 

(0,0)and no offsetTranslation. This means the top left of the QEShape widget is at the origin of the 

object drawing area and and scaling will be towards or away from the top left corner of the widget. The 

right hand pair have an ellipse starting at (-20,-20) and an offsetTranslation of (-40,-40). An 

offsetTranslation of (-40,-40) means the top left of the QEShape widget is located at position (-40,-40) of 

the object drawing area. This places the origin of the drawing area at the centre of the QEShape widget. 

As the ellipse is being drawn around the origin of the drawing area and which is now in the centre of the 

widget, the ellipse appears in the centre of the QEShape widget and is scaled around the centre. 

The difference is in how the object expands as the width and height are scaled by the data value 

changing from 1 to 2 is shown in the top and bottom widgets respectively. The left hand QEShape 



QE Framework – Widget Specifications 
 

 

 
      Page:63 of 78 

 
 

widgets show the ellipse growing out from the top left hand corner, the right hand QEShape widgets 

show the ellipse growing around the centre of the widget. 

 

Figure 37 QEShape originTranslation example 

In Figure 38 a single QEShape widget is shown implementing a meter needle on a background of a 

meter scale. The QEShape widget draws a line object and has a variable animating the line rotation. The 

‘originTranslation’ property has been set to (-118,-124) to place the origin of the drawing area in the 

centre of the meter, and the line coordinates have been set to (0,20) (0,-100) to draw the line through 

the origin. ‘scale1’ has been set to 2.63 to convert a variable value range of 0-100 to a rotation of 0 to 

270 degrees. ‘offset1’ has been set to -130 degrees so the line starts at the zero point on the scale for a 

variable value of zero. 



QE Framework – Widget Specifications 
 

 

 
      Page:64 of 78 

 
 

 

Figure 38 QEShape rotation example 

 

 

Traps 

The QEShape widget provides a view onto the drawing area where the shape is created. The shape may 

seem to disappear if the properties defining the geometry of the shape places it outside the area that 

can be seen by the QEShape widget, or variable values have modified the shape’s position so it is no 

longer viewable within the QEShape widget. 

QSimpleShape and QESimpleShape 
The QSimpleShape and QESimpleShape widgets are now described in its own document. Please see the 

associated QESimpleShape.pdf  file. 

QESlider 
The QESlider widget provides the ability to display and modify the value of a single PV using a slider. 

This widget is derived from QSlider. The example in Figure 39 shows several QESlider widgets connected 

a variable. The QESlider subscribes to the variable by default (subscribe property set by default). 

For many variables, the standard QSlider ‘minimum’ and ‘maximum’ properties can be used to set the 

range of the slider to match the variable data. This is not adequate for some variables. For example, an 



QE Framework – Widget Specifications 
 

 

 
      Page:65 of 78 

 
 

appropriate integer maximum and minimum cannot be set if the variable is a floating point type with a 

range of 0.0 to 1.0. In cases like this the QESlider ‘scale’ and ‘offset’ properties can be used to prescale 

the variable to allow sensible QSlider ‘maximum’ and ‘minimum’ values. For example a scale of 1000 

and a maximum of 1000 would allow a floating point value of 0.0 to 1.0 to be set with a precision of 0.1 

(as long as the slider had a range of at least 1000 pixels). 

Scale and offset properties  

 

Figure 39 QESlider examples 

QESpinBox 
The QESpinBox widget provides the ability to display and modify the value of a single PV using a spin 

box. This widget is derived from QDoubleSpinBox. For variables with a large range, QESpinBox may not 

be the best choice as the step size is set at design time. In these instances, a QNumericEdit and 

QENumericEdit widget may be may be more appropriate. The example in Figure 40 shows several 

QESpinBox widgets, some appropriate for the variable range and some not so appropriate 

The ‘addUnits’ property will set the ‘suffix’ property to the engineering units read for the variable from 

the database. Alternately, the ‘suffix’ property can be set directly. When set directly ‘addUnits’ must be 

cleared or ‘suffix’ will be overwritten with the database value. 



QE Framework – Widget Specifications 
 

 

 
      Page:66 of 78 

 
 

 

Figure 40 QESpinBox examples with a QENumericEdit where more appropriate 

QEStripChart 
Please see the associated Strip_Chart_User_Guide document. 

QESubstitutedLabel 
A QESubstitutedLabel adds macro substitution capability to a standard QLabel widget. A 

QESubstitutedLabel widget with macros in the text is typically used in a form to produce varying text 

depending on the macro substitutions used on the form. For example, a form may include a 

QESubstitutedLabel with the text ‘Pump $(NUM)’ as a title. If the macro substitutions applied to one 

instance of the form include ‘NUM=1’ and ‘NUM=2’ for another, the form title labels will be ‘Pump 1’ 

and ‘Pump 2’ respectively. Another example of using a QESubstitutedLabel to vary a title in multiple 

instances of a sub form is shown in Figure 41 



QE Framework – Widget Specifications 
 

 

 
      Page:67 of 78 

 
 

 

Figure 41 QESubstitutedLabel used to vary title in sub forms 

QETable 
The QETable widget provides an EPICS aware table widget which is capable of displaying up to 20 array 

PVs in tabular form. 

While independent of the QEPlotter widget it is particularly effective when connected to QEPlotter 

signals. Specificly, the QEPlotter ‘crosshairIndexChanged’ signal can be connected to the QETable 

‘setSelection’ slot. When the same variables are being viewed by both widgets the cursor can be used in 

the plotter to simultaneously mark a point in the plot and select the equivalent data row in the table. 

<Include figure of QEPlotter linked with QETable> 

When in the default vertical orientation each column displays a consecutive element from an array 

EPICS variable. When in horizontal mode, the table and functionality is transposed. 



QE Framework – Widget Specifications 
 

 

 
      Page:68 of 78 

 
 

QENTTable 
This class provides an EPICS aware table widget which is capable of displaying a PV Access Normative 

NTTable Type in tabular form. This is new since release 3.7.1 

 

  



QE Framework – Widget Specifications 
 

 

 
      Page:69 of 78 

 
 

Appendix A 

GNU Free Documentation Licence 
 

                GNU Free Documentation License 

                 Version 1.3, 3 November 2008 

 

 

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. 

<http://fsf.org/> 

 Everyone is permitted to copy and distribute verbatim copies 

of this license document, but changing it is not allowed. 

 

0. PREAMBLE 

 

The purpose of this License is to make a manual, textbook, or 

otherfunctional and useful document "free" in the sense of freedom: 

toassure everyone the effective freedom to copy and redistribute it,with 

or without modifying it, either commercially or noncommercially. 

Secondarily, this License preserves for the author and publisher a wayto 

get credit for their work, while not being considered responsiblefor 

modifications made by others. 

 

This License is a kind of "copyleft", which means that derivativeworks of 

the document must themselves be free in the same sense.  Itcomplements the 

GNU General Public License, which is a copyleftlicense designed for free 

software. 

 

We have designed this License in order to use it for manuals for free 

software, because free software needs free documentation: a free 

program should come with manuals providing the same freedoms that the 

software does.  But this License is not limited to software manuals; 

it can be used for any textual work, regardless of subject matter or 

whether it is published as a printed book.  We recommend this License 

principally for works whose purpose is instruction or reference. 

 

 

1. APPLICABILITY AND DEFINITIONS 

 

This License applies to any manual or other work, in any medium, that 

contains a notice placed by the copyright holder saying it can be 

distributed under the terms of this License.  Such a notice grants a 

world-wide, royalty-free license, unlimited in duration, to use that 

work under the conditions stated herein.  The "Document", below, 

refers to any such manual or work.  Any member of the public is a 

licensee, and is addressed as "you".  You accept the license if you 

copy, modify or distribute the work in a way requiring permission 

under copyright law. 

 

A "Modified Version" of the Document means any work containing the 



QE Framework – Widget Specifications 
 

 

 
      Page:70 of 78 

 
 

Document or a portion of it, either copied verbatim, or with 

modifications and/or translated into another language. 

 

A "Secondary Section" is a named appendix or a front-matter section of 

the Document that deals exclusively with the relationship of the 

publishers or authors of the Document to the Document's overall 

subject (or to related matters) and contains nothing that could fall 

directly within that overall subject.  (Thus, if the Document is in 

part a textbook of mathematics, a Secondary Section may not explain 

any mathematics.)  The relationship could be a matter of historical 

connection with the subject or with related matters, or of legal, 

commercial, philosophical, ethical or political position regarding 

them. 

 

The "Invariant Sections" are certain Secondary Sections whose titles 

are designated, as being those of Invariant Sections, in the notice 

that says that the Document is released under this License.  If a 

section does not fit the above definition of Secondary then it is not 

allowed to be designated as Invariant.  The Document may contain zero 

Invariant Sections.  If the Document does not identify any Invariant 

Sections then there are none. 

 

The "Cover Texts" are certain short passages of text that are listed, 

as Front-Cover Texts or Back-Cover Texts, in the notice that says that 

the Document is released under this License.  A Front-Cover Text may 

be at most 5 words, and a Back-Cover Text may be at most 25 words. 

 

A "Transparent" copy of the Document means a machine-readable copy, 

represented in a format whose specification is available to the 

general public, that is suitable for revising the document 

straightforwardly with generic text editors or (for images composed of 

pixels) generic paint programs or (for drawings) some widely available 

drawing editor, and that is suitable for input to text formatters or 

for automatic translation to a variety of formats suitable for input 

to text formatters.  A copy made in an otherwise Transparent file 

format whose markup, or absence of markup, has been arranged to thwart 

or discourage subsequent modification by readers is not Transparent. 

An image format is not Transparent if used for any substantial amount 

of text.  A copy that is not "Transparent" is called "Opaque". 

 

Examples of suitable formats for Transparent copies include plain 

ASCII without markup, Texinfo input format, LaTeX input format, SGML 

or XML using a publicly available DTD, and standard-conforming simple 

HTML, PostScript or PDF designed for human modification.  Examples of 

transparent image formats include PNG, XCF and JPG.  Opaque formats 

include proprietary formats that can be read and edited only by 

proprietary word processors, SGML or XML for which the DTD and/or 

processing tools are not generally available, and the 

machine-generated HTML, PostScript or PDF produced by some word 

processors for output purposes only. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:71 of 78 

 
 

The "Title Page" means, for a printed book, the title page itself, 

plus such following pages as are needed to hold, legibly, the material 

this License requires to appear in the title page.  For works in 

formats which do not have any title page as such, "Title Page" means 

the text near the most prominent appearance of the work's title, 

preceding the beginning of the body of the text. 

 

The "publisher" means any person or entity that distributes copies of 

the Document to the public. 

 

A section "Entitled XYZ" means a named subunit of the Document whose 

title either is precisely XYZ or contains XYZ in parentheses following 

text that translates XYZ in another language.  (Here XYZ stands for a 

specific section name mentioned below, such as "Acknowledgements", 

"Dedications", "Endorsements", or "History".)  To "Preserve the Title" 

of such a section when you modify the Document means that it remains a 

section"Entitled XYZ" according to this definition. 

 

The Document may include Warranty Disclaimers next to the notice which 

states that this License applies to the Document.  These Warranty 

Disclaimers are considered to be included by reference in this 

License, but only as regards disclaiming warranties: any other 

implication that these Warranty Disclaimers may have is void and has 

no effect on the meaning of this License. 

 

2. VERBATIM COPYING 

 

You may copy and distribute the Document in any medium, either 

commercially or noncommercially, provided that this License, the 

copyright notices, and the license notice saying this License applies 

to the Document are reproduced in all copies, and that you add no 

other conditions whatsoever to those of this License.  You may not use 

technical measures to obstruct or control the reading or further 

copying of the copies you make or distribute.  However, you may accept 

compensation in exchange for copies.  If you distribute a large enough 

number of copies you must also follow the conditions in section 3. 

 

You may also lend copies, under the same conditions stated above, and 

you may publicly display copies. 

 

 

3. COPYING IN QUANTITY 

 

If you publish printed copies (or copies in media that commonly have 

printed covers) of the Document, numbering more than 100, and the 

Document's license notice requires Cover Texts, you must enclose the 

copies in covers that carry, clearly and legibly, all these Cover 

Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on 

the back cover.  Both covers must also clearly and legibly identify 

you as the publisher of these copies.  The front cover must present 

the full title with all words of the title equally prominent and 



QE Framework – Widget Specifications 
 

 

 
      Page:72 of 78 

 
 

visible.  You may add other material on the covers in addition. 

Copying with changes limited to the covers, as long as they preserve 

the title of the Document and satisfy these conditions, can be treated 

as verbatim copying in other respects. 

 

If the required texts for either cover are too voluminous to fit 

legibly, you should put the first ones listed (as many as fit 

reasonably) on the actual cover, and continue the rest onto adjacent 

pages. 

 

If you publish or distribute Opaque copies of the Document numbering 

more than 100, you must either include a machine-readable Transparent 

copy along with each Opaque copy, or state in or with each Opaque copy 

a computer-network location from which the general network-using 

public has access to download using public-standard network protocols 

a complete Transparent copy of the Document, free of added material. 

If you use the latter option, you must take reasonably prudent steps, 

when you begin distribution of Opaque copies in quantity, to ensure 

that this Transparent copy will remain thus accessible at the stated 

location until at least one year after the last time you distribute an 

Opaque copy (directly or through your agents or retailers) of that 

edition to the public. 

 

It is requested, but not required, that you contact the authors of the 

Document well before redistributing any large number of copies, togive 

them a chance to provide you with an updated version of theDocument. 

 

 

4. MODIFICATIONS 

 

You may copy and distribute a Modified Version of the Document under 

the conditions of sections 2 and 3 above, provided that you release 

the Modified Version under precisely this License, with the Modified 

Version filling the role of the Document, thus licensing distribution 

and modification of the Modified Version to whoever possesses a copy 

of it.  In addition, you must do these things in the Modified Version: 

 

A. Use in the Title Page (and on the covers, if any) a title distinct 

from that of the Document, and from those of previous versions 

   (which should, if there were any, be listed in the History section 

of the Document).  You may use the same title as a previous version 

if the original publisher of that version gives permission. 

B. List on the Title Page, as authors, one or more persons or entities 

responsible for authorship of the modifications in the Modified 

   Version, together with at least five of the principal authors of the 

   Document (all of its principal authors, if it has fewer than five), 

unless they release you from this requirement. 

C. State on the Title page the name of the publisher of the 

Modified Version, as the publisher. 

D. Preserve all the copyright notices of the Document. 

E. Add an appropriate copyright notice for your modifications 



QE Framework – Widget Specifications 
 

 

 
      Page:73 of 78 

 
 

adjacent to the other copyright notices. 

F. Include, immediately after the copyright notices, a license notice 

giving the public permission to use the Modified Version under the 

terms of this License, in the form shown in the Addendum below. 

G. Preserve in that license notice the full lists of Invariant Sections 

and required Cover Texts given in the Document's license notice. 

H. Include an unaltered copy of this License. 

I. Preserve the section Entitled "History", Preserve its Title, and add 

to it an item stating at least the title, year, new authors, and 

publisher of the Modified Version as given on the Title Page.  If 

there is no section Entitled "History" in the Document, create one 

stating the title, year, authors, and publisher of the Document as 

given on its Title Page, then add an item describing the Modified 

   Version as stated in the previous sentence. 

J. Preserve the network location, if any, given in the Document for 

public access to a Transparent copy of the Document, and likewise 

the network locations given in the Document for previous versions 

it was based on.  These may be placed in the "History" section. 

   You may omit a network location for a work that was published at 

least four years before the Document itself, or if the original 

publisher of the version it refers to gives permission. 

K. For any section Entitled "Acknowledgements" or "Dedications", 

   Preserve the Title of the section, and preserve in the section all 

the substance and tone of each of the contributor acknowledgements 

and/or dedications given therein. 

L. Preserve all the Invariant Sections of the Document, 

unaltered in their text and in their titles.  Section numbers 

or the equivalent are not considered part of the section titles. 

M. Delete any section Entitled "Endorsements".  Such a section 

may not be included in the Modified Version. 

N. Do not retitle any existing section to be Entitled "Endorsements" 

or to conflict in title with any Invariant Section. 

O. Preserve any Warranty Disclaimers. 

 

If the Modified Version includes new front-matter sections or 

appendices that qualify as Secondary Sections and contain no material 

copied from the Document, you may at your option designate some or all 

of these sections as invariant.  To do this, add their titles to the 

list of Invariant Sections in the Modified Version's license notice. 

These titles must be distinct from any other section titles. 

 

You may add a section Entitled "Endorsements", provided it contains 

nothing but endorsements of your Modified Version by various 

parties--for example, statements of peer review or that the text has 

been approved by an organization as the authoritative definition of a 

standard. 

 

You may add a passage of up to five words as a Front-Cover Text, and a 

passage of up to 25 words as a Back-Cover Text, to the end of the list 

of Cover Texts in the Modified Version.  Only one passage of 

Front-Cover Text and one of Back-Cover Text may be added by (or 



QE Framework – Widget Specifications 
 

 

 
      Page:74 of 78 

 
 

through arrangements made by) any one entity.  If the Document already 

includes a cover text for the same cover, previously added by you or 

by arrangement made by the same entity you are acting on behalf of, 

you may not add another; but you may replace the old one, on explicit 

permission from the previous publisher that added the old one. 

 

The author(s) and publisher(s) of the Document do not by this License 

give permission to use their names for publicity for or to assert or 

imply endorsement of any Modified Version. 

 

 

5. COMBINING DOCUMENTS 

 

You may combine the Document with other documents released under this 

License, under the terms defined in section 4 above for modified 

versions, provided that you include in the combination all of the 

Invariant Sections of all of the original documents, unmodified, and 

list them all as Invariant Sections of your combined work in its 

license notice, and that you preserve all their Warranty Disclaimers. 

 

The combined work need only contain one copy of this License, and 

multiple identical Invariant Sections may be replaced with a single 

copy.  If there are multiple Invariant Sections with the same name but 

different contents, make the title of each such section unique by 

adding at the end of it, in parentheses, the name of the original 

author or publisher of that section if known, or else a unique number. 

Make the same adjustment to the section titles in the list of 

Invariant Sections in the license notice of the combined work. 

 

In the combination, you must combine any sections Entitled "History" 

in the various original documents, forming one section Entitled 

"History"; likewise combine any sections Entitled "Acknowledgements", 

and any sections Entitled "Dedications".  You must delete all sections 

Entitled "Endorsements". 

 

 

6. COLLECTIONS OF DOCUMENTS 

 

You may make a collection consisting of the Document and other 

documents released under this License, and replace the individual 

copies of this License in the various documents with a single copy 

that is included in the collection, provided that you follow the rules 

of this License for verbatim copying of each of the documents in all 

other respects. 

 

You may extract a single document from such a collection, and 

distribute it individually under this License, provided you insert a 

copy of this License into the extracted document, and follow this 

License in all other respects regarding verbatim copying of that 

document. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:75 of 78 

 
 

 

7. AGGREGATION WITH INDEPENDENT WORKS 

 

A compilation of the Document or its derivatives with other separate 

and independent documents or works, in or on a volume of a storage or 

distribution medium, is called an "aggregate" if the copyright 

resulting from the compilation is not used to limit the legal rights 

of the compilation's users beyond what the individual works permit. 

When the Document is included in an aggregate, this License does not 

apply to the other works in the aggregate which are not themselves 

derivative works of the Document. 

 

If the Cover Text requirement of section 3 is applicable to these 

copies of the Document, then if the Document is less than one half of 

the entire aggregate, the Document's Cover Texts may be placed on 

covers that bracket the Document within the aggregate, or the 

electronic equivalent of covers if the Document is in electronic form. 

Otherwise they must appear on printed covers that bracket the whole 

aggregate. 

 

 

 

8. TRANSLATION 

 

Translation is considered a kind of modification, so you may 

distribute translations of the Document under the terms of section 4. 

Replacing Invariant Sections with translations requires special 

permission from their copyright holders, but you may include 

translations of some or all Invariant Sections in addition to the 

original versions of these Invariant Sections.  You may include a 

translation of this License, and all the license notices in the 

Document, and any Warranty Disclaimers, provided that you also include 

the original English version of this License and the original versions 

of those notices and disclaimers.  In case of a disagreement between 

the translation and the original version of this License or a notice 

or disclaimer, the original version will prevail. 

 

If a section in the Document is Entitled "Acknowledgements", 

"Dedications", or "History", the requirement (section 4) to Preserve 

its Title (section 1) will typically require changing the actual 

title. 

 

 

9. TERMINATION 

 

You may not copy, modify, sublicense, or distribute the Document 

except as expressly provided under this License.  Any attempt 

otherwise to copy, modify, sublicense, or distribute it is void, and 

will automatically terminate your rights under this License. 

 

However, if you cease all violation of this License, then your license 



QE Framework – Widget Specifications 
 

 

 
      Page:76 of 78 

 
 

from a particular copyright holder is reinstated (a) provisionally, 

unless and until the copyright holder explicitly and finally 

terminates your license, and (b) permanently, if the copyright holder 

fails to notify you of the violation by some reasonable means prior to 

60 days after the cessation. 

 

Moreover, your license from a particular copyright holder is 

reinstated permanently if the copyright holder notifies you of the 

violation by some reasonable means, this is the first time you have 

received notice of violation of this License (for any work) from that 

copyright holder, and you cure the violation prior to 30 days after 

your receipt of the notice. 

 

Termination of your rights under this section does not terminate the 

licenses of parties who have received copies or rights from you under 

this License.  If your rights have been terminated and not permanently 

reinstated, receipt of a copy of some or all of the same material does 

not give you any rights to use it. 

 

 

10. FUTURE REVISIONS OF THIS LICENSE 

 

The Free Software Foundation may publish new, revised versions of the 

GNU Free Documentation License from time to time.  Such new versions 

will be similar in spirit to the present version, but may differ in 

detail to address new problems or concerns.  See 

http://www.gnu.org/copyleft/. 

 

Each version of the License is given a distinguishing version number. 

If the Document specifies that a particular numbered version of this 

License "or any later version" applies to it, you have the option of 

following the terms and conditions either of that specified version or 

of any later version that has been published (not as a draft) by the 

Free Software Foundation.  If the Document does not specify a version 

number of this License, you may choose any version ever published (not 

as a draft) by the Free Software Foundation.  If the Document 

specifies that a proxy can decide which future versions of this 

License can be used, that proxy's public statement of acceptance of a 

version permanently authorizes you to choose that version for the 

Document. 

 

11. RELICENSING 

 

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any 

World Wide Web server that publishes copyrightable works and also 

provides prominent facilities for anybody to edit those works.  A 

public wiki that anybody can edit is an example of such a server.  A 

"Massive Multiauthor Collaboration" (or "MMC") contained in the site 

means any set of copyrightable works thus published on the MMC site. 

 



QE Framework – Widget Specifications 
 

 

 
      Page:77 of 78 

 
 

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0license 

published by Creative Commons Corporation, a not-for-profitcorporation 

with a principal place of business in San Francisco,  

California, as well as future copyleft versions of that licensepublished 

by that same organization. 

 

"Incorporate" means to publish or republish a Document, in whole or in  

part, as part of another Document. 

 

An MMC is "eligible for relicensing" if it is licensed under this  

License, and if all works that were first published under this License 

somewhere other than this MMC, and subsequently incorporated in whole or  

in part into the MMC, (1) had no cover texts or invariant sections, and  

(2) were thus incorporated prior to November 1, 2008. 

 

The operator of an MMC Site may republish an MMC contained in the 

siteunder CC-BY-SA on the same site at any time before August 1, 

2009,provided the MMC is eligible for relicensing. 

 

 

ADDENDUM: How to use this License for your documents 

 

To use this License in a document you have written, include a copy of 

the License in the document and put the following copyright and 

license notices just after the title page: 

 

    Copyright (c)  YEAR  YOUR NAME. 

    Permission is granted to copy, distribute and/or modify this document 

under the terms of the GNU Free Documentation License, Version 1.3 

or any later version published by the Free Software Foundation; 

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. 

    A copy of the license is included in the section entitled "GNU 

Free Documentation License". 

 

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, 

replace the "with...Texts." line with this: 

 

with the Invariant Sections being LIST THEIR TITLES, with the 

    Front-Cover Texts being LIST, and with the Back-Cover Texts being 

LIST. 

 

If you have Invariant Sections without Cover Texts, or some other 

combination of the three, merge those two alternatives to suit the 

situation. 

 

If your document contains nontrivial examples of program code, we 

recommend releasing these examples in parallel under your choice of 

free software license, such as the GNU General Public License, 

to permit their use in free software. 

 

 



QE Framework – Widget Specifications 
 

 

 
      Page:78 of 78 

 
 

 


