
15th June 1025 Note:

While this historical document provides a useful overview of the EPICSQt
framework it is not an active document and there have been considerable changes
to the framework since it was written in 2009.

In particular, the framework is now referred to as the EPICSQt framework, or QE
framework and the prefix in EPICS aware widget names has changed from QCa to
QE.

Also, the framework has been extended considerably since this document was
produced with many new widgets and supporting classes.

Please refer to ‘QE Framework - QEGui and User Interface Design’
(QE_QEGuiAndUserInterfaceDesign.pdf) for an up to date description of the
entire widget set.

Australian Synchrotron Technical Note AS-200906-01

Qt CA Framework

Author: Andrew Rhyder

26 June 2009

Abstract

Description of a software framework based on Qt for accessing EPICS data
using Channel Access, highlighting access to the various layers of the
framework.

1 Introduction

Channel Access is described as ‘one of the core components of an EPICS system. It is
the software component that that allows a Channel Access client application to access
control-system data which may be located on different hosts throughout a network’ [1]

While CA is the default means to access EPICS data, its use is not trivial. A significant
understanding of how CA works is required to execute the steps required to read or write
data. The complexity of setting up and terminating CA requests leaves room for error.
Also, CA uses a C programming interface and so does not make use of any object
oriented programming techniques.

Qt is a cross-platform application and UI framework. It includes a C++ class library
and a cross-platform IDE.

The QCa framework provides a Qt based C++ framework for easy CA access to
EPICS data.

It provides access to EPICS data at several levels from programmatic reading and
writing of data through to EPICS aware Qt user interface plugins such as push buttons,
sliders, and text widgets.

2 QCa Framework Hierarchy Overview

The QCa framework is designed to allow access to CA data in the most appropriate
form. The framework is based on a hierarchy of classes as shown in Table 1. This

QE_FrameworkOverview.docx

2

hierarchy is open at all levels to the developer. Appropriate use of the hierarchy is shown
in Figure 7.

Type of access to CA data Functionality Main classes

C++ access to the CA
library.

Provides convenient C++
access to the CA library.

CaObject

Qt based access to CA.

Hides CA specific
functionality. Adds Qt
functionality such as
signals and slots.

QCaObject

Data type independent
access.

Hides EPICS data types,
providing read and write
conversions where
required.

QCaInteger
QCaString
QCaFloating

EPICS aware graphical
widgets.

Implements graphical Qt
based widgets that provide
access to EPICS data.

QCaLabel
QCaLineEdit
QCaPushButton
QCaShape
QCaSlider
QCaSpinBox

EPICS aware graphical Qt
plugins.

Adds Qt plugin interfaces
to EPICS aware widgets.

QCaLabelPlugin
QCaLineEditPlugin
QCaPushButtonPlugin
QCaShapePlugin
QCaSliderPlugin
QCaSpinBoxPlugin

GUI support widgets

Implements Qt based
widgets that support
control system GUIs.
These widgets to not
access the CA library.

AsGuiForm
GuiPushButton
CmdPushButton

Table 1QCa framework hierarchy

2.1 C++ access to the CA library - CaObject

The CaObject base class provides a C++ wrapper around the CA library. While
available to the developer, it was written mainly to provide a level of abstraction within
the Qt based QCaObject class. It is recommended to be used where a Qt framework is
not available.

While the CaObject class hides little CA functionality, it does use object oriented
techniques to simplify CA access. All CA call-backs are routed through a single pure
virtual function. Data is encapsulated in the ‘generic’ class that provides functions for
extracting and interpreting the data stored in the native CA record.

CaObject was produced to support the QCaObject class so QCaObject is a good
example of using the CaObject class. The code in Figure 1 shows QCaObject’s use of

QE_FrameworkOverview.docx

3

CaObject as a base class, and implementation of CaObject’s call-back pure virtual

function signalCallback().

(extract from QCaObject.h)

class QCaObject : public QObject, caobject::CaObject {

 …

 …

 void signalCallback(caobject::callback_reasons reason);

 …

Figure 1 Code using CaObject

2.2 Qt based access to CA – QCaObject

The QcaObject class provides full access to EPICS data while hiding most CA
specific functionality such as link status, connections and channels.

The QcaObject class adds Qt functionality. Data can be written using a Qt slot and
Qt signals are available for data and status information as required. Qt data types to
represent all EPICS data.

QCaObject was produced to support data type independent classes such as
QCaInteger, so QCaInteger is a good example of using the QCaObject class. The code in
Figure 2 shows QCaInteger’s use of QCaObject as a base class, and setting up to use data
update signals from the QCaObject class. The data in the update signals may be of any
type and is represented by a Qt variant.

(extract from QCaInteger.h
 Using QCaObject as a base class)

class QCaInteger : public qcaobject::QCaObject {

 …

 …

(extract from QCaInteger.cpp
 connecting to data update signal from QCaObject)

void QCaInteger::initialise(…

 …

 …

 QObject::connect(this,

 SIGNAL(dataChanged(const QVariant &)),

 this,

 SLOT(convertVariant(const QVariant &)));

}

Figure 2 Code using QCaObject

2.3 Data type independent access – QCaInteger, etc

The classes QCaInteger, QCaString, and QCaFloating are based on QCaObject and
interpret all data as integers, strings, and floating point numbers respectively. They are
used to provide access to EPICS data in a known format regardless of the actual data type
of the EPICS data. For example, string data is always required for a text label regardless
of the underlying EPICS data type. While some conversions are unlikely to be of much
practical use, all conversions are permitted.

QE_FrameworkOverview.docx

4

Each class is supported by a class defining the conversion and formatting required.
For example, a QCaString instance can be set up to always show a leading zero. The
conversion requirements also define how to handle conversion errors.

The example code in Figure 3 shows a class which logs updates to the process
variable ‘QT:A1’. It creates an instance of a QCaString object that generates a signal each
time the data changes. The signal contains text regardless of the data type of the process
variable. The code directly related to generating and consuming the stream of text updates
is highlighted.

 #include <QObject>

 #include <QCaString.h>

 class test : public QObject

 {

 Q_OBJECT

 public:

 test() {

 stream = new QTextStream(stdout);

 source = new QCaString("QT:A1", this, &formatting, 1,

 &messages);

 QObject::connect(source,

 SIGNAL(stringChanged(const QString&)),

 this,

 SLOT(log(const QString &)));

 source->subscribe();

 }

 private:

 QCaString* source;

 UserMessage messages;

 QCaStringFormatting formatting;

 QTextStream* stream;

 private slots:

 void log(const QString &data){

 *stream << data << "\n";

 stream->flush();

 }

 };

Figure 3Sample code printing a value whenever a process variable updates

2.4 EPICS aware graphical widgets – QCaLabel, etc

The classes QCaLabel, QCaLineEdit, QCaPushButton, QCaShape, QCaSlider, and
QCaSpinBox allow an application to add graphical objects to a user interface that are
EPICS aware. That is, they interact directly with EPICS data. The application sets up the
EPICS process variable name and other parameters that define how the widget interacts
with EPICS data. The application does not have to handle EPICS data or any aspect of
the CA interface.

The application may supply the EPICS aware widgets with an object that the widgets
can send Qt signals to, including error and status messages signals.

QE_FrameworkOverview.docx

5

Code in Figure 4 demonstrates the creation of a label displaying data from an EPICS
process variable and a slider writing to that process variable. Figure 5 shows the resultant
GUI.

#include "mainwindow.h"

#include <QCaLabel.h>

#include <QCaSlider.h>

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

{

 QCaLabel* label = new QCaLabel("QT:A1", this);

 label->activate();

 QCaSlider* slider = new QCaSlider(/*"QT:A1",*/ this);

 slider->setVariableName("QT:A1", 0);

 slider->activate();

 slider->setMinimumHeight(100);

}

Figure 4Code generating a very simple control GUI

Figure 5Control GUI from code in Figure 4

2.5 EPICS aware graphical Qt plugins – QCaLabelPlugin, etc

The classes QCaLabelPlugin, QCaLineEditPlugin, QCaPushButtonPlugin,
QCaShapePlugin, QCaSliderPlugin, and QCaSpinBoxPlugin are EPICS aware widgets
with a Qt plugin interface.

These plugins can be used by any Qt application that can load plugins.

They are loaded into the Qt GUI design tool ‘designer’ which can be used to generate
GUI description files that include EPICS aware widgets. These files can be loaded at run
time by any application code, or used as source for any application. One application that
loads these files at run time in is AsGui.

Examples of the EPICS aware Qt plugins are shown in Figure 6.

2.6 GUI support widgets – AsGuiForm, etc

The classes AsGuiForm, GuiPushButton, and CmdPushButton implement Qt based
widgets that support the development of EPICS control system GUIs. They are not
EPICS aware widgets.

The AsGuiForm class is based on a Qt scroll area widget (QScrollArea) and can
contain any Qt based widgets, including the QCa framework’s widgets. The AsGuiForm
class provides default mechanisms for using the signals the QCa framework’s widgets can
generate. It is used as the scroll area in the AsGui application and can be used to create
sub forms when developing control system GUIs in ‘designer’.

QE_FrameworkOverview.docx

6

The GuiPushButton class is based on a Qt push button (QPushButton) and is used to
launch new GUIs. It can be supplied with a Qt object that will accept Qt signals to start a
new GUI or it can use its own default mechanism for creating a new GUI.

The CmdPushButton class is based on a Qt push button (QPushButton) and is used
to execute any command. Typically it would be used within a GUI to perform an action
on the local machine, such as launch another application.

Examples of the GUI support Qt plugins are shown in Figure 6.

QCa based applications

The QCa framework currently includes a couple of applications. The main application
is AsGui.

AsGui is a graphical control system user interface. It displays EPICS aware GUIs
based on user interface files created using ‘designer’ as shown in Figure 6.

Figure 6A sample GUI created in designer using EPICS aware plugins and GUI support plugins

QCaMonitor is a console application that takes a list of EPICS process variable names
as an argument and monitors changes to the data specified by the names. It will perform

QE_FrameworkOverview.docx

7

the same task as the standard EPICS application caget. It is an example of using
QCaString objects to generate a stream of textual based updates.

3 Class usage

Qt Framework

Qt Framework

Qt Designer AsGui

Console Applications

Widget based GUI

Applications

Other plugin based

GUI Applications

Datatype Independent EPICS Access:

QCaString

QCaInteger

QCaFloating

EPICS Aware Qt Widgets:

QCaLabel

QCaLineEdit

QCaPushButton

QCaShape

QSpinBox

QCaSlider

QCaIcon

EPICS Aware Qt Plugins:

QCaLabelPlugin

QCaLineEditPlugin

QCaPushButtonPlugin

QCaShapePlugin

QSpinBoxPlugin

QCaSliderPlugin

QCaIconPluginPlugin

CA Library

C++ CA Library Access: CaObject

GUI Support Qt Widgets:

CmdPushButton

GuiPushButton

AsGuiForm

GUI Support Qt Plugins:

CmdPushButtonPlugin

GuiPushButtonPlugin

AsGuiFormPlugin

User Interface

Files

QE_FrameworkOverview.docx

8

Figure 7Typical QCa class usage

4 QCa Framework Documentation

A Doxygen documentation set is available at:

http://qt/

Project documentation is available at:

K:\Projects\2076 - QT_GUI_Framework\Technical documents

The following project documents are available:

 Requirements Specification
AS-DOC-0300_Rev0-Qt Requirements Specification.doc

 Design Specification
AS-DOC-0301_Rev0-Qt Design Specification.doc

 Installation Procedure
AS-DOC-0302_Rev0-Qt Installation Procedure.doc

 Developers Guide
AS-DOC-0303_Rev0-Qt Developers Guide.doc

Qt documentation is available at:

 http://www.qtsoftware.com/

